При клеточном дыхании всегда нужен кислород

Содержание
  1. Дыхание растений – особенности, характеристика и значение процесса
  2. Роль клеток
  3. Особенности газообмена
  4. Процесс фотосинтеза
  5. Влияние природных условий
  6. Очищение воздуха
  7. Клеточное дыхание и фотосинтез. Аэробное клеточное дыхание
  8. Фотосинтез: где и как это происходит?
  9. Строение хлоропласта
  10. Этапы
  11. Подготовительный этап
  12. Гликолиз
  13. Окисление
  14. Структура митохондрий
  15. Происхождение двухмембранных органоидов
  16. Дыхание растений
  17. Как происходит дыхание растений?
  18. Что происходит в клетках растений при дыхании?
  19. Какие условия необходимы для дыхания растений?
  20. Процессы, происходящие при дыхании растений
  21. Связь дыхания и фотосинтеза
  22. Значение дыхания в жизни растений
  23. Клеточное дыхание
  24. Биологическое окисление
  25. Анаэробное дыхание
  26. Верны ли следующие суждения о процессах жизнедеятельности растений?А. При фотосинтезе вода разлагается светом.В. При клеточном дыхании всегда нужен кислород
  27. Page 3
  28. Page 4
  29. Page 5
  30. Page 6
  31. Page 7
  32. Page 8
  33. Page 9
  34. Page 10
  35. Page 11
  36. Page 12
  37. Page 13
  38. Page 14
  39. Page 15
  40. Page 16
  41. Page 17
  42. Page 18
  43. Page 19
  44. 1
  45. 2
  46. 3
  47. 4
  48. 5
  49. 6
  50. Как происходит дыхание клеток и тканей в организме человека
  51. Роль кислорода в организме человека
  52. Какие процессы происходят при дыхании клеток/тканей
  53. Как виляет кислород на те или иные состояния и действия человека
  54. Предыдущие статьи

Дыхание растений – особенности, характеристика и значение процесса

При клеточном дыхании всегда нужен кислород

Для нормального функционирования организма каждой клетке нужна энергия. Она появляется во время процесса, какой называют дыханием, при котором расщепляются органические вещества под воздействием кислорода. В результате появляется углекислый газ, вода и свободная энергия.

Растения любого класса нуждаются в солнечном свете, так как они фотосинтезируют. Как и любые другие живые организмы, они выделяют вредные газы. Хотя под воздействием света из них выходит еще и кислород.

Растения дышат круглые сутки, даже в состоянии покоя. Именно поэтому углекислый газ они выделяют постоянно. А для нормального функционирования всех органов в клетки должен беспрерывно поступать кислород.

Сам процесс, который называется дыханием, осуществляется в два этапа:

  • газообмен с внешней средой;
  • клеточное дыхание.

Эти процессы взаимосвязаны, один не может протекать без другого. А дыхание у растений практически не отличается от того, что проходит в организме животных.

Роль клеток

Особую роль в процессе играют клетки. И у растений, и у животных дыхание происходит в специальных центрах — митохондриях. Здесь окисляются органические вещества. Чаще всего энергия образуется с помощью углеводов, но иногда в процессе участвуют белки и жиры.

Во время дыхания вода оседает в клетке. А углекислый газ покидает ее, проходя путь диффузии. При этом зачастую он сразу используется в фотосинтезе. Этот процесс ступенчатый — все происходит не сразу, а постепенно.

В органах проходит множество различных реакций, в результате которых образуются и распадаются такие вещества, как органические кислоты. А вода и газы — это только конечные продукты всех процессов.

Часть органических веществ при этом расходуется. Прорастающие семена теряют примерно до 10% сухой массы. И поэтому для развития растения нужна благоприятная среда. Чем хуже природные условия, тем интенсивнее дышит организм. Семена, которые прорастают, набухают, поэтому процессы в их клетках ускоряются. А пространство между ними наполняется воздухом, облегчая передвижение газов.

Питательные вещества поступают в него из почвы через корень, а в клетках они превращаются в энергию. Все зеленые растения на планете поглощают больше углекислого газа из атмосферы, чем выделяют его.

Вместо этого они выпускают в воздух кислород, необходимый для всех остальных живых организмов. Энергия, которая выделяется при дыхании, необходима для непрерывного роста и развития цветка или дерева.

Особенности газообмена

У растительных организмов нет специальных частей тела, которые отвечали бы за дыхание. Обмен газами происходит через отверстия, расположенные в покровных тканях. Они делятся на два типа:

Последние расположены на листьях растения. У каждого устьица есть свои клетки, в которых постоянно изменяется наполненность водой. Когда они разбухают, то закрывают щели. Через устьица листья поглощают и выпускают газ, а также испаряют лишнюю влагу.

На стеблях находятся более крупные отверстия, их называют чечевичками. Они имеют вытянутую узкую форму, напоминают порезы или царапины. Через них также проходит газ и кислород, выходит лишняя вода.

Растения получают воздух не только в чистом, но и в растворенном виде. Он поступает к стеблям через корни из почвы. Если грунт бедный или слишком сухой, деревья и цветы могут погибнуть.

Процесс фотосинтеза

Фотосинтез и дыхание связаны, хотя это противоположные процессы. Их протекание последовательное. Фотосинтез — это один из способов питания растения. Под солнечными лучами деревья и кустарники образуют вещества из энергии, которую они получили благодаря освещению.

А дыханием называется метод ее освобождения. Выходящая энергия содержится в питательных веществах, которые растение запасает. Но между процессами дыхания и фотосинтеза есть отличия.

В первом случае дерево, цветок или мох выделяют углекислый газ. Именно при дыхании растение поглощает кислород, как и другие живые существа. Газообмен проходит через устьица и чечевички. А у прорастающих семян такая тонкая кожа, что вещества могут выходить в атмосферу через ее отверстия.

Дыхание проходит в каждой клетке организма, так как в них образуется и хранится энергия. Если говорить кратко и понятно, то во время этого процесса растение получает полезные вещества из окружающей среды. Во время дыхания оно поглощает из них энергию, использует ее для развития и роста. А излишки выбрасывает обратно в атмосферу.

Во время фотосинтеза растительные организмы поглощают газ, а выделяют кислород. Именно поэтому так ценятся деревья и цветы, ведь они делают атмосферу пригодной для жизни других существ — человека и животных. Газообмен проходит только через устьица. А сам процесс осуществляется лишь в зеленых клетках. Они содержат специальное вещество — хлорофилл.

Фотосинтез играет особую роль в жизни растений. Во время этого процесса поглощается солнечный свет, благодаря которому могут питаться клетки организма. Свет запасается растением, чтобы расходоваться на его развитие и рост.

Дыхание в разных частях дерева не одинаково по интенсивности. Но есть отдельные элементы, где процесс протекает быстро:

  • растущие органы;
  • прорастающие семена;
  • распускающиеся цветы.

Биологи не рекомендуют расставлять такие растения в жилых помещениях — они выделяют много газа. Он делает воздух непригодным для человека. Не стоит ставить в комнатах и срезанные цветы, так как они поглощают слишком много кислорода.

Не только надземные органы могут дышать. Воздухом насыщаются и клетки корней. Для их нормального развития нужно часто рыхлить почву вокруг растения.

Влияние природных условий

Большую активность проявляют растения, которые можно встретить в горах или постоянно освещаемых местностях. Тенелюбивые организмы дышат не так часто и быстро. На интенсивность процесса влияют и другие природные условия:

  • вода;
  • температура воздуха;
  • содержание кислорода в атмосфере.

Если семена высадить в сухую почву, то их дыхание будет замедленным. Для нормального развития и расхода питательных веществ влажность грунта должна быть не менее 33%. Но для длительного хранения зерна и сухих растений ее уровень необходимо понизить до 14%.

Интенсивность дыхания напрямую зависит от температуры воздуха. Чем она выше, тем быстрее протекает процесс. Он не останавливается даже зимой при -20 С, только замедляется.

Благодаря этому владельцам дачных участков удается сохранить клубни картофеля в погребах и подвалах целыми. Но слишком высокая температура тоже отрицательно сказывается на состоянии растения.

Семена перестают дышать, если жара доходит до +50 С.

Огромное значение имеет степень освещенности. Чем ярче в помещении, тем быстрее будут прорастать семена. Если рассада слишком выросла, то ее нужно поместить в тень. Цветы и деревья, которые встречаются в прохладных местностях с низкой освещенностью, дышат гораздо медленнее.

Кислород необходим всем живым организмам на планете, кроме бактерий. Но в воздухе он содержится в определенном соотношении с другими газами. Состав атмосферы меняется, когда в нее попадают промышленные отходы. В некоторых местностях воздух становится непригодным для проживания животных и человека.

Из-за загрязнений появляются дыры в озоновом слое, из-за чего появляется парниковый эффект. Последствия таких изменений — таяние ледников и затопление некоторых участков суши, а также сдвиг сезонов года.

Очищение воздуха

Атмосфера загрязняется не только из-за человеческой деятельности, но и вследствие жизненных процессов других организмов. Качество воздуха ухудшают несколько типов веществ:

  • углекислый газ;
  • производственные отходы — сажа, пыль, зола, дым, копоть;
  • ядовитые синтетические вещества;
  • сельскохозяйственные химикаты;
  • выхлопные газы.

В загрязненной атмосфере растения дышат медленно, это ухудшает их развитие и рост. Но чистый воздух нужен не только для наземных частей — стеблей, листьев, цветков. Корни также нуждаются в кислороде. Недостаток воздуха и переизбыток влаги приводят к гибели дерева.

У зеленых насаждений есть несколько полезных функций:

  • обогащение атмосферы кислородом;
  • создание новых органических веществ;
  • улучшение состояния почвы;
  • поддержание оптимального количества углекислого газа в воздухе.

Солнечный свет в растениях накапливается в виде питательных веществ. Они необходимы всем живым организмам. Накопленную энергию цветы и деревья используют для окисления некоторых веществ. Но схема фотосинтеза гораздо важнее, чем процесс дыхания. Растения выделяют гораздо больше кислорода, чем углекислого газа.

Обмен веществ в деревьях и кустарниках происходит постепенно. Дыхание сопровождается фотосинтезом, оба процесса тесно связаны. Растения обеспечивают атмосферу кислородом и очищают ее от вредного газа.

Источник: https://nauka.club/biologiya/dykhani%D0%B5-rasteniy.html

Клеточное дыхание и фотосинтез. Аэробное клеточное дыхание

При клеточном дыхании всегда нужен кислород

Фотосинтез и дыхание – два процесса, лежащие в основе жизни. Они оба происходят в клетке. Первый – в растительных и некоторых бактериальных, второй – и в животных, и в растительных, и в грибных, и в бактериальных.

Можно сказать, что клеточное дыхание и фотосинтез – процессы, противоположные друг другу. Отчасти это правильно, так как при первом поглощается кислород и выделяется углекислый газ, а при втором – наоборот.

Однако эти два процесса некорректно даже сравнивать, поскольку они происходят в разных органоидах с использованием разных веществ.

Цели, для которых они нужны, тоже различны: фотосинтез необходим для получения питательных веществ, а клеточное дыхание – для выработки энергии.

Фотосинтез: где и как это происходит?

Это химическая реакция, направленная на получение органических веществ из неорганических. Обязательным условием протекания фотосинтеза является присутствие солнечного света, так как его энергия выступает в роли катализатора.

Фотосинтез, характерный для растений, можно выразить следующим уравнением:

  • 6СО2 + 6Н2О = С6Н12О6 + 6О2.

То есть из шести молекул диоксида карбона и стольких же молекул воды в присутствии солнечного света растение может получить одну молекулу глюкозы и шесть кислорода.

Это самый простой пример фотосинтеза. Кроме глюкозы в растениях могут синтезироваться и другие, более сложные углеводы, а также органические вещества из других классов.

Вот пример выработки аминокислоты из неорганических соединений:

  • 6СО2 + 4Н2О + 2SO42- + 2NO3- + 6Н+ = 2C3H7O2NS + 13О2.

Как видим, из шести молекул диоксида углерода, четырех молекул воды, двух сульфат-ионов, двух нитрат-ионов и шести ионов водорода с использованием солнечной энергии можно получить две молекулы цистеина и тринадцать – кислорода.

Процесс фотосинтеза происходит в специальных органоидах – хлоропластах. В них содержится пигмент хлорофилл, который выступает в роли катализатора для химических реакций. Такие органоиды есть только в растительных клетках.

Строение хлоропласта

Это органоид, который обладает формой вытянутого шара. Размер хлоропласта обычно составляет 4-6 мкм, однако в клетках некоторых водорослей можно обнаружить гигантские пластиды – хроматофоры, размер которых достигает 50 мкм.

Этот органоид относится к двухмембранным. Он окружен внешней и внутренней оболочками. Они отделены друг от друга межмембранным пространством.

Внутренняя среда хлоропласта называется “строма”. В ней находятся тилакоиды и ламеллы.

Тилакоиды – это плоские дискообразные мешочки из мембран, в которых находится хлорофилл. Именно здесь и происходит фотосинтез. Собираясь в стопки, тилакоиды образуют граны. Количество тилакоидов в гране может варьироваться от 3 до 50.

Ламеллы – это структуры, образованные мембранами. Они представляют собой сеть разветвленных каналов, основная функция которых – обеспечить связь между гранами.

В хлоропластах также содержатся свои рибосомы, необходимые для синтеза белков, и собственные ДНК и РНК. Кроме того, здесь могут находиться включения, состоящие из запасных питательных веществ, в основном крахмала.

Существует несколько видов данного процесса. Бывает анаэробное и аэробное клеточное дыхание. Первое характерно для бактерий. Анаэробное дыхание бывает нескольких типов: нитратное, сульфатное, серное, железное, карбонатное, фумаратное. Такие процессы позволяют бактериям получить энергию без использования кислорода.

Аэробное клеточное дыхание характерно для всех остальных организмов, в том числе животных и растений. Оно происходит при участии кислорода.

У представителей фауны клеточное дыхание происходит в специальных органоидах. Они называются митохондриями. У растений также клеточное дыхание происходит в митохондриях.

Этапы

Клеточное дыхание проходит в три стадии:

  1. Подготовительный этап.
  2. Гликолиз (анаэробный процесс, не требует кислорода).
  3. Окисление (аэробный этап).

Подготовительный этап

Первый этап заключается в том, что сложные вещества в пищеварительной системе расщепляются на более простые. Таким образом, из белков получаются аминокислоты, из липидов – жирные кислоты и глицерин, из сложных углеводов – глюкоза. Эти соединения транспортируются в клетку, а затем – непосредственно в митохондрии.

Гликолиз

Он заключается в том, что под действием ферментов глюкоза расщепляется до пировиноградной кислоты и атомов водорода. При этом образуется АТФ (аденозинтрифосфорная кислота). Этот процесс можно выразить таким уравнением:

  • С6Н12О6 = 2С3Н3О3 + 4Н + 2АТФ.

Таким образом, в процессе гликолиза из одной молекулы глюкозы организм может получить две молекулы АТФ.

Окисление

На данном этапе образовавшаяся во время гликолиза пировиноградная кислота под действием ферментов реагирует с кислородом, в результате чего образуется углекислый газ и атомы водорода. Эти атомы затем транспортируются на кристы, где окисляются, образуя воду и 36 молекул АТФ.

Итак, в процессе клеточного дыхания в общей сложности образуется 38 молекул АТФ: 2 на втором этапе и 36 – на третьем. Аденозинтрифосфорная кислота и есть основной источник энергии, которым митохондрии снабжают клетку.

Структура митохондрий

Органоиды, в которых происходит дыхание, есть и в животных, и в растительных, и в грибных клетках. Они обладают шаровидной формой и размером около 1 микрона.

Митохондрии, как и хлоропласты, имеют две мембраны, разделенные межмембранным пространством. То, что находится внутри оболочек этого органоида, называется матриксом. В нем находятся рибосомы, митохондриальная ДНК (мтДНК) и мтРНК. В матриксе проходит гликолиз и первая стадия окисления.

Из внутренней мембраны формируются складки, похожие на гребни. Они называются кристами. Здесь проходит вторая стадия третьего этапа клеточного дыхания. Во время нее образуется больше всего молекул АТФ.

Происхождение двухмембранных органоидов

Учеными доказано, что структуры, которые обеспечивают фотосинтез и дыхание, появились в клетке путем симбиогенеза. То есть когда-то это были отдельные организмы. Этим объясняется то, что и в митохондриях, и в хлоропластах есть свои рибосомы, ДНК и РНК.

Источник: https://FB.ru/article/217429/kletochnoe-dyihanie-i-fotosintez-aerobnoe-kletochnoe-dyihanie

Дыхание растений

При клеточном дыхании всегда нужен кислород

Дыхание растений представляет собой серию ферментативных реакций, которые позволяют растениям превращать накопленную энергию углеводов, вырабатываемых в процессе фотосинтеза, в форму энергии, которую они могут использовать для ускорения роста и метаболических процессов.

Посредством фотосинтеза растения превращают солнечный свет в потенциальную энергию в виде химических связей углеводных молекул.

 Однако, чтобы использовать эту накопленную энергию для обеспечения жизненно важных процессов – от роста и размножения до заживления поврежденных структур – растения должны преобразовать ее в пригодную для использования форму.

 Это преобразование происходит посредством клеточного дыхания, основного биохимического пути, также обнаруженного у животных и других организмов.

Как животные и люди, растения тоже дышат

Растения нуждаются в кислороде для дыхания, которые в свою очередь выделяют углекислый газ. В отличие от животных и людей, растения не имеют каких-либо специализированных структур для газообразного обмена и по сравнению с животными и людьми корни растений, стебли и листья дышат с очень низкой скоростью.

Как происходит дыхание растений?

Все зеленые растения дышат через процесс клеточного дыхания.

Дыхание состоит из сложной серии химических реакций.

 На первом этапе глюкоза окисляется, и химическая потенциальная энергия ее связей передается химическим потенциальным связям молекулы АТФ (аденозинтрифосфата).

 Затем молекула АТФ может транспортироваться по всей клетке, где ее накопленная энергия используется для выполнения различных задач внутри клетки. Этот процесс выделяет углекислый газ и воду.

Что происходит в клетках растений при дыхании?

Растения дышат на протяжении всей своей жизни, так как клетка растения требует энергии для своего выживания. Но растения не дышат, как люди и животные, они дышат через процесс, называемый клеточным дыханием.

Клеточное дыхание у растений – это процесс, используемый растениями для преобразования питательных веществ, полученных из почвы, в энергию, которая питает клеточную деятельность растений.

Глюкоза, образующаяся в процессе фотосинтеза, распространяется вокруг растения в виде растворимых сахаров и дает энергию клеткам растения во время дыхания.

Первой стадией дыхания является гликолиз, который расщепляет молекулу глюкозы на две меньшие молекулы, называемые пируватом, и выделяет небольшое количество энергии АТФ (аденозинтрифосфат).

Эта стадия (анаэробное дыхание) не нуждается в кислороде.

На втором этапе молекулы пирувата реорганизуются и снова сливаются в цикле. В то время как молекулы реорганизуются, образуется углекислый газ, а электроны удаляются и помещаются в систему переноса электронов, которая (как и при фотосинтезе) производит много АТФ для растения, чтобы использовать его для роста и размножения. Эта стадия (аэробное дыхание) действительно нуждается в кислороде.

Результатом клеточного дыхания является то, что растение поглощает глюкозу и кислород, выделяет углекислый газ и воду и выделяет энергию. Растения дышат в любое время дня и ночи, потому что их клетки нуждаются в постоянном источнике энергии, чтобы остаться в живых.

Помимо того, что растение используется для выделения энергии посредством дыхания, глюкоза, образующаяся в процессе фотосинтеза, превращается в крахмал, жиры и масла для хранения и используется для производства целлюлозы для роста и регенерации клеточных стенок и белков.

Какие условия необходимы для дыхания растений?

Дыхание состоит из ряда реакций, которые происходят главным образом в митохондриях растительных клеток. В дополнение к типу растений, несколько факторов окружающей среды влияют на скорость дыхания растительной клетки.

Возраст ткани / Стадия жизни

У более молодой ткани частота дыхания выше, чем у более старой. Таким образом, верхушка корня и молодые листья имеют более высокую частоту дыхания, чем более старые корневые сегменты и листья.

Когда семя впервые впитывает воду, частота дыхания клеток быстро возрастает, но выравнивается примерно через 20 минут.

Созревшие плоды вызывают всплеск дыхательной активности, который достигает кульминации, когда плоды достигают максимальной зрелости.

Температура

Частота дыхания в растительной клетке уменьшается при понижении температуры до тех пор, пока дыхание почти или полностью не остановится при низких температурах. Дыхание увеличивается с ростом температуры, пока не будут достигнуты очень высокие температуры, что приведет к ухудшению состояния тканей.

Температура сильно влияет на дыхание для поддержания (гораздо больше, чем клетки, предназначенные для роста растений). У растений в умеренном климате частота дыхания зимой значительно ниже, чем в теплое лето.

Частоту дыхания фруктов можно контролировать, храня фрукты в прохладных, сухих местах. Более низкие температуры хранения могут замедлить дыхание и созревание фруктов.

Кислород

Дыхание замедляется с уменьшением доступного кислорода. В условиях, когда кислорода нет, как, например, в плохо дренируемой почве, происходит анаэробное дыхание (брожение). Анаэробное дыхание приводит к образованию углекислого газа, некоторого количества энергии и этанола. Этот тип дыхания также используется для создания спиртов.

Частота дыхания для большинства растений достигает пика при нормальном уровне кислорода в атмосфере.

Если, например, корни дерева затоплены в течение длительных периодов времени, они не могут поглощать кислород и преобразовывать глюкозу для поддержания клеточных метаболических процессов. В результате заболачивание и чрезмерное орошение могут лишить корни кислорода, убить корневую ткань, повредить деревья и снизить урожайность.

Углекислый газ

Двуокись углерода, один из отходов дыхания, также влияетелен. Чем выше концентрация углекислого газа, тем ниже частота дыхания.

Повреждения

Дыхание усиливается как непосредственно зараженными, так и окружающими клетками, когда ткань растения повреждена или заражена. Часто, когда в яблоке есть червячная дыра, маленький коричневый синяк окружает его — это указывает на усиление дыхания в области вокруг поврежденных клеток.

Недостаток воды

Сухая ткань имеет более низкую частоту дыхания, чем гидратированная. Хотя засуха оказывает гораздо большее влияние на процесс фотосинтеза в растительных клетках, недостаток доступной воды также отрицательно влияет на дыхание.

Доступные сахара

Листья верхнего купола часто видят более высокие частоты дыхания.

Увеличение доступных сахаров в результате фотосинтеза обычно приводит к увеличению частоты дыхания. Частота дыхания в листьях верхнего купола будет выше, чем в листьях нижнего купола, потому что верхушки производят больше сахара.

Процессы, происходящие при дыхании растений

Во время дыхания в разных частях растений происходит очень мало газообмена. Поэтому каждая часть заботится о своих собственных потребностях в энергии.

Корни, стебли и листья растений обмениваются газами для дыхания отдельно. Как мы все знаем, листья имеют крошечные поры, называемые устьицами, которые используются для обмена газов. Кислород, всасываемый через устьицы, используется клетками в листьях для расщепления глюкозы на углекислый газ и воду.

Дыхание в корнях

Корни, подземная часть растений поглощает воздух из воздушных пространств, присутствующих между частицами почвы. Таким образом, кислород, поглощаемый через корни, используется для высвобождения энергии, которая впоследствии используется для транспортировки минералов и солей из почвы.

Дыхание в стеблях

В случае стебля воздух рассеивается в устьицах и проходит через различные части клетки для дыхания. Диоксид углерода, образующийся на этой стадии, также диффундирует через устьица. У высших или древесных растений газообразный обмен осуществляется чечевицами.

Дыхание в листьях

Листья содержат крошечные поры, называемые устьицами. Обмен газов происходит через устьица в процессе диффузии. Каждая стома контролируется ячейками охраны. Открытие и закрытие стомы помогают в обмене газами между атмосферой и внутренней частью листьев.

Связь дыхания и фотосинтеза

Все организмы, животные и растения должны получать энергию для поддержания основных биологических функций для выживания и размножения. Растения преобразуют энергию солнечного света в сахар в процессе, называемом фотосинтезом.

 Фотосинтез использует энергию света для преобразования молекул воды и углекислого газа в глюкозу (молекулу сахара) и кислород.

 Кислород высвобождается или «выдыхается» из листьев, в то время как энергия, содержащаяся в молекулах глюкозы, используется во всем растении для роста, формирования цветов и развития плодов.

Внутри листа есть несколько структур, которые играют важную роль в движении питательных веществ и воды по всему растению.

Листья содержат воду, которая необходима для преобразования световой энергии в глюкозу посредством фотосинтеза. Листья имеют две структуры, которые сводят к минимуму потерю воды, кутикулу и устьица. Кутикулы являются восковым покрытием на верхнюю и нижнюю часть листьев, которые предотвращают испарение воды в атмосферу.

Хотя кутикула обеспечивает важную защиту от чрезмерной потери воды, листья не могут быть непроницаемыми, поскольку они также должны пропускать углекислый газ (для использования при фотосинтезе) и кислород.

 Эти газы попадают в лист и выходят из него через отверстия на нижней стороне, называемые устьицами.

 После того, как углекислый газ попадает в лист через устьицы, он попадает в клетки мезофилла, где происходит фотосинтез и строится глюкоза.

Связь между фотосинтезом и клеточным дыханием такова, что продукты одной системы являются реагентами другой. Фотосинтез включает использование энергии солнечного света, воды и углекислого газа для производства глюкозы и кислорода. Клеточное дыхание использует глюкозу и кислород для производства углекислого газа и воды. 

Люди, животные и растения зависят от цикла клеточного дыхания и фотосинтеза для выживания.

 Кислород, вырабатываемый растениями во время фотосинтеза, – это то, что люди и животные вдыхают, чтобы кровь транспортировалась в клетки для дыхания.

 Углекислый газ, образующийся во время дыхания, выделяется из организма и поглощается растениями, чтобы помочь обеспечить энергию, необходимую для роста и развития. Это бесконечный цикл, который поддерживает жизнь на земле.

Процесс фотосинтеза используется растениями и другими фотосинтезирующими организмами для производства энергии, тогда как процесс клеточного дыхания расщепляет энергию для использования. Несмотря на различия между этими двумя процессами, есть некоторые сходства. 

Например, оба процесса синтезируют и используют АТФ, универсальную энергию.

  • В процессе фотосинтеза АТФ производится с помощью энергии света (фотофосфорилирования) и используется для создания органических молекул
  • При клеточном дыхании АТФ образуется путем расщепления органических молекул (окислительное фосфорилирование)

Относительные скорости фотосинтеза, которые производят молекулы газа и дыхания, влияют на общую продуктивность растений. Там, где активность фотосинтеза превышает дыхание, рост растений протекает на высоком уровне. Там, где дыхание превышает фотосинтез, рост замедляется.

И фотосинтез, и дыхание увеличиваются с повышением температуры, но в определенный момент скорость фотосинтеза выравнивается, в то время как частота дыхания продолжает расти. Это может привести к истощению накопленной энергии.

 Чистая первичная продуктивность – количество биомассы, созданной зелеными растениями.

Она может использоваться для остальной части пищевой цепи – представляет собой баланс фотосинтеза и дыхания, рассчитанный путем вычитания энергии, потерянной для дыхания, из общей химической энергии, производимой фотосинтезом.

Значение дыхания в жизни растений

Растения дышат, но они преимущественно участвуют в процессе, называемом фотосинтезом. Это совпадает с характеристиками дыхания, за исключением соответствующих химических реакций, протекающих в обратном направлении. 

Поскольку дыхание и фотосинтез дополняют друг друга во всех экосистемах планеты, дыхание имеет такое же жизненно важное значение для растений, как и для организмов, которые напрямую зависят от дыхания.

Углекислый газ является фактором для фотосинтеза. Животные вдыхают кислород и выдыхают углекислый газ. Растения потребляют углекислый газ и выдыхают кислород. 

Таким образом, животные дают растениям углекислый газ, тогда как растения дают животному кислород.

Существует равновесие между кислородом и углекислым газом между животными и растениями. Без одного другой не выживет долго.

Источник: https://karatu.ru/dyxanie-rastenij/

Клеточное дыхание

При клеточном дыхании всегда нужен кислород

Клеточное дыхание — это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы — гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим.

При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона — восстановление. Окисляемое вещество — это донор, а восстанавливаемое — акцептор водорода и электронов.

Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах.

Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции.

Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул АТФ — универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ.

Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки.

В то же время она служит для поддержания постоянной температуры тела.

Различные этапы клеточного дыхания у аэробных эукариот происходят

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C6H12O6 + 6H2O → 6CO2 + 12H2 + 4АТФ

Дыхательная цепь: 12H2 + 6O2 → 12H2O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

Большинство анаэробов — это микроорганизмы. Однако к организмам, использующим анаэробное дыхание, относятся также дрожжи, ряд червей-паразитов. Способностью к анаэробному дыханию также обладают определенные ткани. Например, мышечные клетки, которые периодически могут испытывать недостаток кислорода.

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH3COCOOH (пируват) → CH3CHO (ацетальдегид) + CO2

CH3CHO + НАД · H2 → CH3CH2OH (этанол) + НАД

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH3COCOOH + НАД · H2 → CH3CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.

plustilino © 2019. All Rights Reserved

Источник: https://biology.su/molecular/cellular-respiration

Верны ли следующие суждения о процессах жизнедеятельности растений?А. При фотосинтезе вода разлагается светом.В. При клеточном дыхании всегда нужен кислород

При клеточном дыхании всегда нужен кислород

Верны ли следующие суждения о процессах жизнедеятельности растений?А. При фотосинтезе вода разлагается светом.

В. При клеточном дыхании всегда нужен кислород.

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 3

Какой это цвет глаз с научной точки зрения? Что за голубые круги (это не из-за качества фото и не из-за отражения)? Меня это больше всего волнует. Центральная и немного секторная гетерохромия – коричневая, а края тогда какие, зелёные или какие-то другие? И какой это оттенок?

Может я дальтоник, но мне кажется, что это зелёный или всё же карий? Можно более научно, а не просто мнение.

Page 4

Расположите в правильном порядке пункты инструкции по работе с фиксированным микропрепаратом ткани. В ответе запишите соответствующую последовательность цифр.

1) зарисуйте микропрепарат, сделайте обозначения2) зажмите препарат лапками-держателями3) положите микропрепарат на предметный столик4) глядя в окуляр, настройте свет5)

медленно приближайте тубус микроскопа к микропрепарату, пока не увидите чёткое изображение ткани

Page 5

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 6

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 7

ДЫХАНИЕ РАСТЕНИЙ И ФОТОСИНТЕЗУ растений дыхание присуще всем органам, тканям и клеткам. Для дыхания они используют атмосферный кислород, проникающий через устьица листьев и зелёных побегов, кожицу молодых корней, а также чечевички древесных стеблей. Кроме того, растения для дыхания расходуют кислород, образовавшийся в результате фотосинтеза. Дышат растения и днём, и ночью.

Днём для дыхания используется в основном атмосферный кислород, а ночью, когда устьица закрыты – кислород, накопленный в листьях в процессе фотосинтеза. Поступающий при дыхании кислород окисляет имеющиеся в растении органические вещества до углекислого газа и воды.

При этом освобождается заключённая в органических веществах энергия, которая расходуется растением для роста, развития и размножения. Образующийся при дыхании растений углекислый газ удаляется через устьица, чечевички, через всю поверхность молодых корней.Дыхание растений – процесс противоположный фотосинтезу.

Фотосинтез происходит, главным образом, в мякоти листьев растений, в которых расположена основная фотосинтезующая ткань. Её клетки содержат хлоропласты с зелёным пигментом – хлорофиллом, способным улавливать свет. В процессе фотосинтеза из углекислого газа и воды на свету в хлоропластах клеток образуется глюкоза.

Синтезированные в процессе фотосинтеза органические вещества используются растением для питания и синтеза других органических веществ: жиров, белков, витаминов и гормонов. Все эти органические вещества идут на построение тела растения, а также откладываются в запасающих тканях и используются при дыхании. Побочным продуктом фотосинтеза является свободный кислород.

Он образуется в процессе фотосинтеза и выделяется растением в окружающую среду.Задание Используя содержание текста «Дыхание растений и фотосинтез», ответьте на следующие вопросы.1) В каких клетках происходит процесс фотосинтеза?2) Какова роль кислорода в процессе дыхания?

3) На что затрачивается энергия в процессе фотосинтеза?

Page 8

МИТОХОНДРИИ И ХЛОРОПЛАСТЫМитохондрии и хлоропласты — наиболее крупные органоиды клетки. Они имеют свои собственные молекулы ДНК, способны независимо от ядра клетки к биосинтезу и делению. Эти органоиды преобразуют внешнюю энергию в виды, которые могут быть использованы для жизнедеятельности клеток и целостных организмов.

Эллипсовидные по форме митохондрии характерны для всех эукариот. Наружная мембрана у них гладкая, а внутренняя образует складки. На мембранах складок располагаются многочисленные ферменты. Основная функция митохондрий — синтез универсального источника энергии — АТФ — в процессе окисления органических веществ.

Хлоропласты, в отличие от митохондрий, присутствуют только в растительных клетках, но встречаются и у некоторых простейших, например, у зелёной эвглены. С этими органоидами связан процесс фотосинтеза, заключающийся в преобразовании световой энергии в энергию химических связей молекул глюкозы.

Благодаря процессу фотосинтеза в атмосферу постоянно поступает кислород.Хлоропласты несколько крупнее митохондрий. Внутри их почти шаровидного тела имеются многочисленные мембраны, на которых располагаются ферменты. Там же находится пигмент хлорофилл, придающий пластидам зелёный цвет.

ЗаданиеИспользуя содержание текста «Митохондрии и хлоропласты», ответьте на следующие вопросы.1) Какие вещества являются исходными в фотосинтезе?2) Какие вещества являются конечными в прцессе фотосинтеза?3) В каком органоиде клетки протекает фотосинтез?Задание Используя содержание текста «Митохондрии и хлоропласты», ответьте на следующие вопросы.

1) Какие вещества являются исходными в энергетическом обмене?2) Какие вещества являются конечными продуктами энергетического обмена?

3) С помощью уравнений химических реакций поясните схему процесса дыхания.

Page 9

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 10

ГРИБЫ И ЛИШАЙНИКИЦарство Грибы объединяет одноклеточные и многоклеточные организмы, обладающие одновременно признаками растений и животных. Например, как и растения, грибы относительно неподвижны, обладают неограниченным ростом, способны к синтезу витаминов и имеют клеточные стенки.

На животных грибы похожи тем, что питаются готовыми органическими веществами, т.е. гетеротрофно, запасают в качестве питательного вещества гликоген, синтезируют мочевину, а в состав их клеточных стенок входит хитин.Тело многоклеточных грибов представлено грибницей, состоящей из отдельных нитей – гифов.

Размножаются грибы вегетативно, с помощью грибницы, спорами, образующимися в плодовых телах, или посредством половых клеток, формирующихся на концах гифов.

Грибы могут вступать в симбиотические отношения с высшими растениями (микориза), снабжая их при этом минеральными солями, водой и получая взамен от растений необходимые органические вещества.

Особый отдел составляют лишайники – комплексные организмы, образованные грибницей гриба, клетками одноклеточных зелёных водорослей, а иногда ещё и клетками азотфиксирующих цианобактерий.

Гриб в лишайнике поглощает из окружающей среды воду и минеральные вещества, клетки водорослей снабжают лишайник органическими веществами, образованными в результате фотосинтеза, а цианобактерии фиксируют атмосферный азот. Размножаются лишайники как целостные организмы – кусочками слоевища или группами клеток, оплетенных гифами.

Используя содержание текста “Грибы и лишайники”, ответьте на следующие вопросы.1) Какие организмы образуют лишайник?2) Какие особенности строения растений можно наблюдать и у грибов?3) Какую роль в жизнедеятельности лишайника играет входящий в его состав гриб?Используя содержание текста «Грибы и Лишайники», ответьте на следующие вопросы.1) Почему лишайники называют комплексными организмами?2) Какие особенности жизнедеятельности животных можно наблюдать и у грибов?

3) Какое значение для лишайника имеют его водоросли и цианобактерии?

Page 11

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 12

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 13

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 14

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 15

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 16

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 17

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 18

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Page 19

Помогите пожалуйста :_)Укажіть, яка з оболонок нашої планети найменш заселена організмами:а) тропосфераб) ноосфера в) гідросфераг) літосфераУкажіть, як називають процес розвитку екосистеми у місцях, де на певний час життя повністю зникло:а) первинна сукцесіяб) вторинна сукцесіяв) відродження екосистемиг) стан клімаксуУкажіть яка з екосистем є найбіднішою:а) клімакснаб) вологий тропічний лісв) агроценоз

г) екотон

0

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

1

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

2

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

3

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

4

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

5

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

6

Если к задуманному числу приписать справа цифру 8, то она увеличится на 485. найдите 1 / 5 задуманного числа а) 250 б)

Источник: https://znanija.site/biologiya/32585899.html

Как происходит дыхание клеток и тканей в организме человека

При клеточном дыхании всегда нужен кислород

Дыхание связано с обменом кислорода. Чтобы понять, как и для чего это происходит, важно понять роль кислорода для организма человека. Зная это, гораздо легче поддержать свое здоровье, выстроить подходящий рацион и режим дня.

Роль кислорода в организме человека

Кислород обеспечивает в клетках и тканях организма реакции окисления, в результате которых образуются и распадаются разные вещества. Конечные продукты этого процесса: вода и углекислый газ. Этот процесс и называют тканевым дыханием, когда поглощается кислорода, а выделяется вода и углекислый газ.

Особенность тканевого дыхания в том, что вещества, не способные к окислению молекулярным кислородом, легко окисляются внутри клеток под воздействием поглощенного кислорода. На этот счет есть много предположений, но пока ни одного доказательства, почему именно так. Понятно только одно, что в клетках организма кислород каким-то образом принимает высокую активность.

В организме человека кислород принимает участие в двух видах окислительных реакций. В первом случае, как уже было сказано, выделяются вода и углекислый газ. А во втором случае происходит окисление и расщепление питательных веществ из пищи.

Какие процессы происходят при дыхании клеток/тканей

Что же происходит в организме, когда его клетки дышат? Вообще, кислород для дыхания тканей необходим ежесекундно. Поэтому-то, при длительной задержке дыхания мы начинаем чувствовать головокружение и помутнение сознания.

Коротко тканевое дыхание можно определить как, комплекс окислительно-восстановительных реакций некоторых веществ с последующим выделением энергии. Окисляются при этом, поступающие с пищей, углеводы, жиры и белки.

Кровь является транспортировщиком кислорода, поэтому также участвует в газообмене всего организма. Из крови кислород всасывается в клетки тканей, а выделяемый ими углекислый газ, наоборот, поступает в кровь. Так артериальная кровь, насыщенная кислородом, превращается в венозную.

Энергия, которая выделяется при окислительно-восстановительных реакциях, потребляется всем организмом и поддерживает его жизнедеятельность. И это не  только пищеварение и выживание клеток. Это еще и проявление разнообразия эмоций, это и умственный труд, это и физические нагрузки, и многое другое.

Как виляет кислород на те или иные состояния и действия человека

Нет смысла подробно описывать здесь все биохимические процессы тканевого дыхания с перечислением все причастных ферментов. Важно только сказать, что полноценное снабжение организма кислородом обеспечивает и нормальный вес, и хорошее настроение, и высокую работоспособность.

Например, давайте посмотрим на этот вопрос с точки зрения сохранения нормального веса тела. Почему происходит, вообще, набор веса? При повышенной массе тела неиспользованные белки и углеводы (в том числе сахар) превращаются в жировые отложения.

Вес растет, появляется одышка, организм получает меньше кислорода, и расщепление углеводов ухудшается. Они все больше превращаются в жиры и токсины.

Поэтому при похудении, первое, что важно – это полноценное дыхание, это достаточное количество свежего воздуха и постоянное движение.

Как связано настроение и кислород? Точно также, как и нормальный вес. Настроение – это результат работы центральной нервной системы. А это есть биохимические процессы в головном мозге, прежде всего. А их все, как мы уже разобрали, поддерживает кислород.

Когда ЦНС работает правильно, человек всегда чувствует себя на подъеме. Когда же есть любое отклонение от нормы, это проявляется в нарушении химических реакций в ГМ. Случается стресс, который может перерасти в хроническую депрессию.

Вот тут-то как раз плохое настроение – один из симптомов.

Как влияет кислород на работоспособность физическую и умственную? Опять, вездесущий кислород. Реакции, в которых он участвует, обеспечивают выделение энергии для мышц. Больше свежего воздуха, легче работается.

Наверное, замечали, что в душном зале или комнате и думается хуже, и двигается с неохотцой. То же самое и про умственную работоспособность. Поэтому для повышения работоспособности важно чаще проветривать помещение.

Что бы ни взяли, любое состояние человека или любое его действие, все сведется в конечном итоге к достаточному количеству свежего воздуха, то есть наличия в нем кислорода.

Часто случается, что организм привыкает к дефициту кислорода. Так сказать «мутирует» влегкую. И если человека из регионов с пониженным содержанием кислорода в атмосфере поместить в лес, например, ему немедленно захочется залезть «под выхлопную трубу».

Поэтому для укрепления нервной системы, для улучшения работы сердечно-сосудистой системы, для нормализации пищеварения и других систем организма важно, в первую очередь, поддерживать в порядке легкие и бронхи, чтобы организм получал достаточное количество жизненно важного кислорода.

Предыдущие статьи

Источник: https://NPC-RiZ.biz/publ/kompleksnoe_primenenie_produkcii_npcriz/kak_proiskhodit_dykhanie_kletok_i_tkanej_v_organizme_cheloveka/8-1-0-406

Доктор-про
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: