Сахар входящий в состав рнк

Нуклеиновые кислоты

Сахар входящий в состав рнк

Нуклеиновые кислоты — фосфорсодержащие биополимеры, построенные из мономеров — нуклеотидов и обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

■ Открыты Ф. Мишером (1869 г., Швейцария).

* В молекулах нуклеиновых кислот содержится от 80 до нескольких сот миллионов нуклеотидов.

■ Нуклеиновые кислоты содержатся в ядрах, митохондриях и пластидах клеток.

Нуклеотид — органическое соединение, в состав которого входят: одно из пяти азотистых оснований (аденин, гуанин, урацил, тмин, цитозин), пятиуглеродный моносахарид (рибоза или дезокснрибоза) и остаток молекулы фосфорной кислоты (РO4).

Название и обозначение нуклеотидов: нуклеотид называется по имени своего азотистого основания и обозначается первой заглавной буквой его названия (пример: А — адениновый нуклеотид).

Комплементарные нуклеотиды — это пары нуклеотидов А и Т, а также Г и Ц, между азотистыми основаниями которых могут образовываться водородные связи.

В зависимости от того, какой сахар входит в состав нуклеотидов, нуклеиновые кислоты подразделяются на дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК).

Дезоксирибонуклеиновая кислота (ДНК)

❖ Состав ДНК:

■ пятиуглеродный сахар дезокси-рибоза,

■ азотистые основания (аденин, гуанин, тимин, цитозин),

■ остаток фосфорной кислоты.

❖ Структура ДНК впервые расшифрована Дж. Уотсоном и Ф. Криком в 1953 г.

■ молекула ДНК состоит из двух полинуклеотидных цепочек, спирально закрученных одна относительно другой;

■нуклеотиды в каждой цепочке ДНК связаны друг с другом ковалентными фосфодиэфирными связями, образующимися между фосфатной группой одного нуклеотида и гидроксильной группой дезоксирибозы соседнего;

■ цепочки ДНК соединены друг с другом двумя или тремя водородными связями между комплементарными азотистыми основаниями: А = Т, Ц = Г.

Комплементарносгь — принцип, в соответствии с которым объединяются две полинуклеотидные цепи в молекуле ДНК, а также осуществляется синтез всех типов РНК на молекулах ДНК и синтез полипептидов по и-РНК в рибосомах: против нуклеотида А одной цепи может быть только нуклеотид Т другой цепи, а против нуклеотида Г — только нуклеотид Ц.

Правило Чаргофа (следствие комплементарности нуклеотидов): число адениловых нуклеотидов равно числу тимидиловых: А = Т, а число гуаниловых нуклеотидов равно числу цити-диловых: Г = Ц; откуда следует, что А + Г = Т + Ц.

Свойства ДНК: эта молекула способна к транскрипции, репарации, репликации.

Транскрипция — это процесс «считывания» генетической информации с одной из нитей молекулы ДНК и копирования ее на молекулу и-РНК, происходящий путем биосинтеза молекул и-РНК на соответствующих участках ДНК; является первым этапом реализации генетической информации в живых клетках.

■ Транскрипция происходит с помощью фермента РНК-лоли-меразы, который, двигаясь по молекуле ДНК, подбирает нуклеотиды, комплементарные нуклеотидам участка ДНК, и соединяет их в цепочку и-РНК.

Репарация — процесс исправления повреждений (восстановления) в молекулах ДНК и компенсации уже закрепившихся мутаций; происходит при участии особых ферментов.

Репликация (или удвоение) ДНК — происходящий под контролем ферментов процесс синтеза новой молекулы ДНК как точной копии уже существующей молекулы ДНК при ее использовании как матрицы; наблюдается в ходе подготовки клетки к делению. Матричный синтез ДНК идет по принципу комплементарности, антипараллельно; полуконсервативный прерывистый матричный синтез — от 3′- к 5′-концу.

Этапы репликации ДНК:

■ постепенное разделение (с помощью специального фермента) комплементарных цепей ДНК в результате разрыва водородных связей между ними;

■ деспирализация разделившихся участков полинуклеотидных цепей ДНК (происходит при участии фермента ДНК-изомеразы);

■ комплементарный синтез новых (дочерних) полинуклеотидных цепей на каждой из старых цепей как на матрице; осуществляется с помощью фермента ДНК-полимеразы.

Локализация ДНК в клетках:

■ в хромосомах клеточного ядра (около 99% всей ДНК клетки), в митохондриях и пластидах эукариотических клеток;

■ в прокариотических клетках погружена в цитоплазму.

Функции ДНК: хранение, передача дочерним клеткам и воспроизведение генетической информации.

■В ДНК любой клетки закодирована информация о строении, количестве и последовательности синтеза всех белков данного организма.

Рибонуклеиновая кислота (РНК)

Состав РНК:

■ пятиуглеродный сахар рибоза,

■ азотистые основания (аденин, гуанин, урацил, цитозин),

■ остаток фосфорной кислоты.

Структура РНК (см. рис. 1.3):

■ молекула РНК состоит из одной полинуклеотидной цепочки;

■ нуклеотиды в каждой цепочке РНК связаны друг с другом ковалентными фосфодиэфирными связями;

■ кроме того, между соседними нуклеотидами цепочки могут образовываться водородные связи;

* цепочки РНК значительно короче молекул ДНК, имеют меньшую молярную массу.

Виды РНК:

■ информационная РНК (и-РНК),

■ транспортная РНК (т-РНК),

■ рибосомальная РНК (р-РНК).

Информационная РНК (составляет 7 — рибозофосфатная основа около 5% от всех РНК клетки):

■ структура: незамкнутая цепь, содержащая от 300 до 30000 нуклеотидов; является комплементарной копией определенного участка ДНК (гена);

* функции: каждая специфическая молекула и-РНК переносит информацию о структуре определенного белка от ДНК в рибосомы (место сборки молекул белков) и является матрицей для синтеза молекул этого белка.

Транспортная РНК (составляет до 15% от всех РНК клетки):

■ структура: содержит 75-85 нуклеотидов; молекула т-РНК имеет вторичную структуру в форме «клеверного листа» (из-за наличия водородных связей) и два активных участка: антикодонтриплет нуклеотидов на верхушке «клеверного листа», и акцепторный конец, к которому присоединяются аминокислоты;

функция т-РНК — транспорт аминокислот в рибосому к месту сборки молекул белка.

Рибосомальная РНК (составляет до 85% от всех РНК клетки):

■ место синтеза: молекулы р-РНК синтезируются в ядре клетки;

■ локализация: в комплексе с белками образует рибосомы — ор-ганеллы, на которых происходит синтез белка;

■ функция р-РНК — обеспечение нужного пространственного взаимного расположения и-РНК и т-РНК в рибосоме.

Аденозинтрифосфорная кислота (АТФ)

Аденозинтрифосфорная кислота (АТФ) — органическое вещество, выполняющее роль аккумулятора энергии в клетке в виде макроэргических связей.

❖ Состав молекул АТФ:

■ пятиуглеродный сахар рибоза,

• азотистое основание аденин,

• три остатка молекул фосфорной кислоты.

❖ Энергетика химических связей:

■ между остатками молекул фосфорной кислоты существуют макроэргические связи; при разрыве одной такой связи в результате гидролитического (под воздействием молекулы воды) отщепления выделяетс)( 40 кДж энергии;

■ аккумуляция энергии в вышеуказанных связях происходит в процессе синтеза АТФ за счет энергии, освобождающейся при окислении органических веществ (окислительное фосфорилирование).

❖ Некоторые особенности АТФ:

■ АТФ синтезируется в гиалоплазме, митохондриях и хлоропла-стах (у растений в процессе фотосийтеза);

■ среднее время жизни молекулы АТФ в клетке — менее 1 мин.

❖ Значение АТФ: это — главный и универсальный источник энергии для всех процессов жизнедеятельности в клетке.

биология, клетки

Источник: https://esculappro.ru/nukleinovyie-kislotyi.html

Рнк (рибонуклеиновая кислота)

Сахар входящий в состав рнк

Рнк (рибонуклеиновая кислота), так же как и ДНК, относится к нуклеиновым кислотам. Молекулы-полимеры РНК намного меньше, чем у ДНК. Однако в зависимости от типа РНК количество входящих в них нуклеотидов-мономеров различается.

В состав нуклеотида РНК в качестве сахара входит рибоза, в качестве азотистого основания — аденит, гуанин, урацил, цитозин. Урацил по строению и химическим свойствам близок к тимину, который обычен для ДНК. В зрелых молекулах РНК многие азотистые основания модифицированы, поэтому в реальности разновидностей азотистых оснований в составе РНК намного больше.

Рибоза в отличие от дезоксирибозы имеет дополнительную -ОН-группу (гидроксильную). Это обстоятельство позволяет РНК легче вступать в химические реакции.

Главной функцией РНК в клетках живых организмов можно назвать реализацию генетической информации. Именно благодаря разным типам рибонуклеиновой кислоты генетический код считывается (транскрибируется) с ДНК, после чего на его основе синтезируются полипептиды (происходит трансляция).

Итак, если ДНК в основном отвечает за хранение и передачу из поколения в поколение генетической информации (основной процесс – репликация), то РНК реализует эту информацию (процессы транскрипции и трансляции).

При этом транскрипция происходит на ДНК, так что этот процесс относится к обоим типам нуклеиновых кислот и тогда с этой точки зрения можно сказать, что и ДНК отвечает за реализацию генетической информации.

При более подробном рассмотрении функции РНК намного разнообразнее. Ряд молекул РНК выполняют структурную, каталитическую и другие функции.

Существует так называемая гипотеза РНК-мира, согласно которой вначале в живой природе в качестве носителя генетической информации выступали только молекулы РНК, при этом другие молекулы РНК катализировали различные реакции. Данная гипотеза подтверждена рядом опытов, показывающих возможную эволюцию РНК. На это указывает и то, что ряд вирусов в качестве нуклеиновой кислоты, хранящей генетическую информацию, имеют молекулу РНК.

Согласно гипотезе РНК-мира ДНК появилась позже в процессе естественного отбора как более устойчивая молекула, что важно для хранения генетической информации.

Выделяют три основных типа РНК (кроме них есть и другие): матричная (она же информационная), рибосомальная и транспортная. Обозначаются они соответственно иРНК (или мРНК), рРНК, тРНК.

Почти все РНК синтезируются на ДНК в процессе транскрипции. Однако часто транскрипция упоминается как синтез именно информационной РНК (иРНК). Связано это с тем, что последовательность нуклеотидов иРНК в последствии определит последовательность аминокислот синтезируемого в процессе трансляции белка.

Перед транскрипцией нити ДНК расплетаются, и на одной из них с помощью комплекса белков-ферментов синтезируется РНК по принципу комплементарности, так же как это происходит при репликации ДНК. Только напротив аденина ДНК к молекуле РНК присоединяется нуклеотид, содержащий урацил, а не тимин.

На самом деле на ДНК синтезируется не готовая информационная РНК, а ее предшественник — пре-иРНК. Предшественник содержит участки последовательности нуклеотидов, которые не кодируют белок и которые после синтеза пре-иРНК вырезаются при участии малых ядерных и ядрышковых РНК («дополнительные» типы РНК). Эти удаляющиеся участки называются интронами.

Остающиеся части иРНК называются экзонами. После удаления интронов экзоны сшиваются между собой. Процесс удаления интронов и сшивания экзонов называется сплайсингом. Усложняющей жизнь особенностью является то, что можно вырезать интроны по-разному, в результате получатся разные готовые иРНК, которые будут служить матрицами для разных белков.

Таким образом, вроде бы один ген ДНК может играть роль нескольких генов.

Следует отметить, что у прокариотических организмов сплайсинга не происходит. Обычно их иРНК сразу после синтеза на ДНК готова к трансляции. Бывает, что пока конец молекулы иРНК еще транскрибируется, на ее начале уже сидят рибосомы, синтезирующие белок.

После того как пре-иРНК созревает в информационную РНК и оказывается вне ядра, она становится матрицей для синтеза полипептида.

При этом на нее «насаживаются» рибосомы (не сразу, какая-то оказывается первой, другая — второй и т. д.). Каждая синтезирует свою копию белка, т. е.

на одной молекуле РНК могут синтезироваться сразу несколько одинаковых белковых молекул (понятно, что каждая будет находиться на своей стадии синтеза).

Рибосома, передвигаясь от начала иРНК к ее концу, считывает по три нуклеотида (хотя вмещает шесть, т. е. два кодона) и присоединяет соответствующую транспортную РНК (имеющую соответствующий кодону антикодон), к которой присоединена соответствующая аминокислота.

После этого с помощью активного центра рибосомы ранее синтезированная часть полипептида, соединенная с предшествующей тРНК, как-бы «пересаживается» (образуется пептидная связь) на аминокислоту, прикрепленную к только что пришедшей тРНК.

Таким образом, молекула белка постепенно увеличивается.

Когда молекула информационной РНК становится не нужна, клетка ее разрушает.

Транспортная РНК (тРНК)

Транспортная РНК — это достаточно маленькая (по меркам полимеров) молекула (количество нуклеотидов бывает разным, в среднем около 80-ти), во вторичной структуре имеет форму клеверного листа, в третичной сворачивается в нечто подобное букве Г.

Функция тРНК – присоединение к себе соответствующей своему антикодону аминокислоты. В дальнейшем соединение с рибосомой, находящейся на соответствующем антикодону кодоне иРНК, и «передача» этой аминокислоты. Обобщая, можно сказать, что транспортная РНК переносит (на то она и транспортная) аминокислоты к месту синтеза белка.

Живая природа на Земле использует всего около 20-ти аминокислот для синтеза различных белковых молекул (на самом деле аминокислот куда больше).

Но поскольку, согласно генетическому коду, кодонов больше 60-ти, то каждой аминокислоте может соответствовать несколько кодонов (на самом деле какой-то больше, какой-то меньше).

Таким образом, разновидностей тРНК больше 20, при этом разные транспортные РНК переносят одинаковые аминокислоты. (Но и тут не так все просто.)

Рибосомная РНК (рРНК)

Рибосомную РНК часто также называют рибосомальной РНК. Это одно и то же.

Рибосомная РНК составляет около 80% всей РНК клетки, так как входит в состав рибосом, коих в клетке бывает достаточно много.

В рибосомах рРНК образует комплексы с белками, выполняет структурную и каталитическую функции.

В состав рибосомы входят несколько разных молекул рРНК, отличающиеся между собой как по длине цепи, вторичной и третичной структуре, выполняемым функциям. Однако их суммарная функция — это реализация процесса трансляции. При этом молекулы рРНК считывают информацию с иРНК и катализируют образование пептидной связи между аминокислотами.

plustilino © 2019. All Rights Reserved

Источник: https://biology.su/molecular/rna

Что собой представляет нуклеотид: вид, строение и длина одного нуклеотида

Сахар входящий в состав рнк

Все живое на планете состоит из многочисленных клеток. Они поддерживают упорядоченность своей организации с помощью генетической информации, содержащейся в ядре, которая сохраняется, передается и реализуется высокомолекулярными сложными соединениями — нуклеиновыми кислотами. Кислоты эти, в свою очередь, состоят из мономерных звеньев – нуклеотидов.

  • Понятие нуклеотида
  • Состав и основные свойства нуклеотидов
  • Нуклеиновые кислоты
  • Состав азотистых оснований
  • Образование фосфодиэфирных связей
  • Структура ДНК
  • Функции и свойства ДНК
  • Молекула РНК – структура
  • Роль нуклеотида в организме

Роль нуклеиновых кислот переоценить невозможно. Нормальная жизнедеятельность организма определяется стабильностью их структуры. Если в строении происходят любые отклонения , меняется количество либо последовательность — это обязательно приводит к изменениям в клеточной организации. Изменяется активность физиологических процессов и жизнедеятельность клеток.

: водородная связь образуется между молекулами, химический механизм.

Понятие нуклеотида

Как и белки, нуклеиновые кислоты необходимы для жизни. Это генетический материал всех живых организмов, включая вирусы.

Выяснение структуры одного из двух типов нуклеиновых кислот ДНК позволило понять, каким образом в живых организмах хранится информация, необходимая для регулирования жизнедеятельности и как она передается потомству. Нуклеотид представляет собой мономерную единицу, образующую соединения более сложные — нуклеиновые кислоты.

Без них невозможно хранение, воспроизведение и передача генетической информации. Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.Из них строятся длинные молекулы — полинуклеотиды.

Чтобы разобраться со структурой полинуклеотида следует понять строение нуклеотидов.

: типы кристаллических решёток, таблица.

Что такое нуклеотид? Молекулы ДНК собраны из мелких мономерных соединений. Другими словами, нуклеотид — это органическое сложное соединение, представляющее собой составную часть нуклеиновых кислот и других биологических соединений, необходимых для жизнедеятельности клетки.

Состав и основные свойства нуклеотидов

В состав молекулы нуклеотида (мононуклеотида) в определенной последовательности входят три химических соединения:

  1. Пентоза или пятиугольный сахар:
  • дезоксирибоза. Эти нуклеотиды называют дезоксирибонуклеотидами. Они входят в состав ДНК;
  • рибоза. Нуклеотиды входят в состав РНК и называются рибонуклеотидами.

2. Азотистая пиримидиновая или пуриновая основа, связанная с углеродным атомом сахара. Это соединение называют нуклеозидом

3. Фосфатная группа, состоящая из остатков фосфорной кислоты ( в количестве от одного до трех). Присоединяется к углероду сахара эфирными связями, образующими молекулу нуклеотида .

Свойствами нуклеотидов являются:

  • участие в метаболизме и других физиологических процессах, которые протекают в клетке;
  • осуществление контроля над репродукцией и ростом;
  • хранение информации о наследуемых признаках и о структуре белка.

Нуклеиновые кислоты

Сахар в нуклеиновых кислотах представлен пентозой. В РНК пятиуглеродный сахар называется рибозой, в ДНК — дезоксирибозой. В каждой молекуле пентозы пять атомов углерода, из которых четыре образуют кольцо с атомом кислорода , а пятый атом входит в группу НО-СН2.

В молекуле положение атома углерода обозначается цифрой со штрихом (например:1C´, 3C´, 5C´). Так как у вех процессов считывания с молекулы нуклеиновой кислоты наследственной информации имеется строгая направленность, нумерация углеродных атомов и их расположение служат указателем верного направления.

С первым углеродным атомом 1C´ в молекуле сахара соединяется азотистое основание.

К третьему и пятому углеродным атомам по гидроксильной группе (3C´, 5C´) присоединяется остаток фосфорной кислоты, который определяет химическую принадлежность к группе кислот ДНК и РНК.

Состав азотистых оснований

Виды нуклеотидов по азотистому основанию ДНК :

Первые два класса — пурины:

Два последние относятся к классу пиримидинов:

Пуриновые соединения по молекулярной массе тяжелее пиримидиновых.

Нуклеотиды РНК по азотистому соединению представлены:

  • гуанином;
  • аденином;
  • урацитолом;
  • цитозином.

Так же, как тимин, урацил является пиримидиновым основанием. Нередко в научной литературе азотистые основания обозначаются латинскими буквами (A, T, C, G, U).

Пиримидины, а именно тимин, цитозин, урацил представлены шестичленным кольцом, состоящим из двух атомов азота и четырех атомов углерода, последовательно пронумерованных , от 1 до 6.

Пурины (гуанин и аднин) состоят из имидазола и пиримидина. В молекулах пуриновых оснований четыре атома азота и пять атомов углерода. У каждого атома имеется свой номер от 1 дот 9.

Результатом соединений азотистых остатков с остатками пентозы является нуклеозид. Нуклеотид – это соединение фосфатной группы с нуклеозидом.

Образование фосфодиэфирных связей

Следует разобраться в вопросе о том, как нуклеотиды соединяются в полипептидную цепь, сколько их участвует в процессе ,образуя молекулу нуклеиновой кислоты за счет фосфодиэфирных связей.

При взаимодействии двух нуклеотидов образуется динуклеотид. Новое соединение образуется путем конденсации, когда возникает фосфодиэфирная связь между гидроксигруппой пентозы одного мономера и фосфатным остатком другого.

Синтезом полинуклеотида является многочисленное повторение этой реакции. Сборка полинуклеотидов представляет сложный процесс, обеспечивающей рост цепи с одного конца.

Структура ДНК

Молекулы ДНК, как и молекулы белка, имеют первичную, вторичную структуры и третичную. Первичную структуру в цепи ДНК определяет последовательность нуклеотидов. В основе вторичной структуры лежит формирование водородных связей.

При синтезе двойной спирали ДНК имеется определенная закономерность и последовательность: тимин одной цепи соответствует аденину другой; цитозин – гуанину, и наоборот.

Соединения нуклеидов создают прочную связь цепей, с равным между ними расстоянием.

Зная последовательность нуклеотидов одной цепи ДНК можно по принципу дополнения или комплементарности достроить вторую.

Третичная структура ДНК образовывается путем трехмерных сложных соединений. Это делает молекулу более компактной, чтобы она могла свободно разместиться в небольшом объеме клетки. длина кишечной палочки ДНК более 1 мм, в то время как длина самой клетки менее 5 мкм.

Количество пиримидиновых оснований равняется всегда числу пуриновых. Расстояние между нуклеотидами равняется 0,34 нм. Это постоянная величина, как и молекулярная масса.

Функции и свойства ДНК

Основные функции ДНК:

  • сохраняет наследственную информацию;
  • передача (удвоение/репликация);
  • транскрипция, реализация;
  • ауторепродукция ДНК. Функционирование репликона.

Процесс самовоспроизведения молекулы нуклеиновой кислоты сопровождается передачей от клетки к клетке копий генетической информаций. Для его осуществления необходимы набор специфических ферментов. В этом процессе полуконсервативного типа образуется репликативная вилка.

Репликон представляет собой единицу репликационного процесса участка генома, подконтрольного одной точке инициации репликации. Как правило, геном прокариот -это репликон. Репликация от точки инициации идет в обе стороны, иногда с различной скоростью.

Молекула РНК – структура

РНК является одной полинуклеотидной цепочкой, которая образуется через ковалентные связи между фосфатным остатком и пентозой . Она короче ДНК, имеет другую последовательность и различается по видовому составу азотистых соединений. Пиримидиновое основание тимина в РНК заменяется урацилом.

РНК может быть трех видов, в зависимости от тех функций, которые выполняются в организме:

  • информационная (иРНК) — очень разнообразная по нуклеотидному составу. Она является своего рода матрицей для синтеза белковой молекулы, переносит генетическую информацию к рибосомам от ДНК;
  • транспортная (тРНК) в среднем состоит из 75-95 нуклеотидов. Она переносит необходимую аминокислоту в рибосоме к месту синтеза полипептида. У каждого вида тРНК и есть своя, присущая только ему последовательность нуклеотидов или мономеров;
  • рибосомальная (рРНК) обычно одержит от 3000 до 5000 нуклеотидов. Рибосом является необходимым структурным ом компонент участвующим в важнейшем процессе, происходящем в клетке – биосинтезе белка.

Роль нуклеотида в организме

В клетке нуклеотиды выполняют важные функции:

  • являются биорегуляторами;
  • используются как структурные блоки для нуклеиновых кислот ;
  • входят в состав главного источника энергии в клетке — АТФ;
  • участвуют во многочисленных обменных процессах в клетках;
  • являются переносчиками восстановительных эквивалентов в клетках (ФАД, НАДФ+; НАД+; ФМН);
  • могут рассматриваться как вестники регулярного внеклеточного синтеза (цГМФ, цАМФ).

Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.

Источник: https://obrazovanie.guru/himiya/nukleotid-stroenie-massa-dlina-posledovatelnost.html

Какой в состав ДНК входит сахар? Химические основы строения ДНК

Сахар входящий в состав рнк

Как удивительно смотреть, насколько похожи между собой бывают родители и дети. Или же, напротив, совершенно отличны и от братьев и сестер, и от папы и мамы. Почему же так получается и от чего это зависит? Какие структуры отвечают за сохранение, закрепление, передачу и проявление признаков у потомков от родителей?

Эта роль принадлежит нуклеиновым кислотам, которые формируют хромосомы. Именно они и являются молекулами, выполняющими функции всех процессов, связанных с наследственностью и изменчивостью. Особенная прерогатива в этом принадлежит молекулам ДНК.

История открытия нуклеиновых кислот

Долгое время о таких молекулах не было известно. Однако в 1869 году ученый Мишер в результате исследований обнаружил смесь ДНК и РНК, а затем сумел установить их принадлежность к кислотам. Сделал он это на основании изучения лейкоцитов в гное.

С этих пор началось активное изучение данных соединений. Многие ученые пытались установить химический состав ДНК и РНК. Понять их природу, сущность строения и биологическую роль. Большой вклад в это дело внесли такие люди, как:

  • А. Н. Белозерский.
  • Томас Морган.
  • К. Бриджис.
  • А. Меллер.
  • Г. де Фриз.
  • А. Стертевант.
  • Г. А. Надсон.
  • А. С. Серебровский.
  • Н. П. Дубинин.
  • Т. С. Филиппов и другие.

В период с 1900 года по наше время была выяснена природа нуклеиновый кислот, химические основы строения ДНК, ее особенности и биологическое значение. Были сделаны открытия, позволяющие считать данную молекулу универсальной основой всего живого.

Исследования в области генетики позволили установить взаимосвязь между ДНК, геном и хромосомами, расшифровать генетический код многих живых существ. Это имело важное значение для понимания устройства живой природы, механизмов ее работы.

Также был определен химический состав хромосом. Было выяснено, что основа их – молекулы нуклеиновой кислоты, имеющей специфическое строение.

ДНК: общая характеристика

Полная расшифровка аббревиатуры названия – дезоксирибонуклеиновая кислота. Наравне с РНК данная кислота относится к ряду нуклеиновых. Свое название получила за то, что в состав ДНК входит сахар. Его название – дезоксирибоза.

Химический состав ДНК и РНК очень схож, различие как раз-таки в первую очередь в углеводе, образующем молекулу. У РНК это рибоза.

В общем виде молекула дезоксирибонуклеиновой кислоты представляет собой сложную двуцепочечную макромолекулу, имеющую огромную молекулярную массу и разнообразный состав. Поэтому чаще всего графическое изображение данного соединения имеет вид двух нитей, объединенных поперечными ступенями – связями.

В 1953 году Чаргафф и его сотрудники сумели раскрыть полностью внутреннее строение и состав молекулы, что имело огромное значение для всей молекулярной биологии и науки в целом. Стало очевидным, что в состав ДНК входит сахар пятиуглеродной основы (пентоза), пуриновые и пиримидиновые основания и остатки ортофосфорной кислоты.

Это позволило не только дальше расшифровать само строение соединения, но также изучить свойства, физические и химические. Биологическая роль и значение для организма была определена как основополагающая, универсальная и специфическая для каждого существа.

Химический состав

Если характеризовать внутренний атомный и молекулярный состав молекулы нуклеиновой кислоты, то можно выделить несколько основных типов соединений:

  • пентоза – дезоксирибоза (углевод моносахарид);
  • органические основания – пуриновые (аденин и гуанин), пиримидиновые (цитозин и тимин);
  • остатки фосфорной кислоты со свободными связями.

Это, в общем-то, все химические основы строения ДНК. Другое дело, что соединение всех этих компонентов не простое, а представляет собой сложный и уникальный процесс. Так, соединенные между собой дезоксирибоза, основания и остаток неорганической кислоты вместе формируют нуклеотид. Именно из нуклеотидных последовательностей и складывается вся структура молекулы в целом.

Уникальным является то, в какой последовательности будут располагаться органические основания друг за другом и по отношению к соседней цепочке.

Нуклеотидная последовательность построена по определенным принципам, главным из которых является комплементарность (строгое соответствие пуриновых и пиримидиновых компонентов).

Это позволяет каждому живому существу иметь свой генетический код, уникальный, врожденный и глубоко специфический.

Фенотипически это проявляется в виде наследования совершенно разных признаков, в том, что нет двух одинаковых людей (кроме однояйцевых близнецов), отличительных чертах внешности.

В состав днк входит какой сахар?

Основа любого органического вещества – это углеродная цепочка атомов. Молекула ДНК не стала исключением. Ведь в состав ДНК входит сахар, а именно он состоит из последовательности пяти атомов углерода, объединенных в циклическую структуру. Эта же молекула прерывается кислородным мостиком, входящим в общий цикл.

Химический состав сахара выражается следующей эмпирической формулой: С5Н10О4. Эта молекула – альдопентоза, включающая пять атомов углерода, закрученных в цикл. Помимо этого, один из атомов цепи вместо гидроксильной группы содержит только водород, поэтому в названии сахара появилась такая приставка, как “дезокси”, то есть без кислорода.

Химический состав сахара был открыт и исследован Фибусом Ливеном, который и раскрыл всю структуру и химическую сущность соединения в 1929 году.

Основания в составе молекулы

Органические основания, входящие в состав нуклеиновой кислоты ДНК можно разделить на две основные группы.

  1. Пуриновые – сложные структуры, образованные двумя углеродными циклами – пятичленным и шестичленным. К ним относятся аденин и гуанин, которые комплементарны пиримидиновым основаниям в составе дезоксирибонуклеиновой кислоты.
  2. Пиримидиновые – шестичленные углеродные циклы. Сюда входит тимин и цитозин.

Таким образом, получается, что в состав ДНК входит сахар и основание, соединенные между собой и скрепленные связями с радикалом фосфорной кислоты. Все вместе это и получается нуклеотид. В двуцепочечной структуре общей молекулы ДНК нуклеотиды связываются между собой согласно правилу комплементарности: аденину соответствует основание тимин, а гуанину – цитозин.

Типы связей между частицами

Основные типы связей между компонентными структурами ДНК следующие:

  • водородные;
  • ковалентные полярные;
  • силы межмолекулярного притяжения;
  • ваан-дер-вальсовы взаимодействия.

Это позволяет двуцепочечной структуре существовать в трех конформациях:

  • первичной – линейной последовательности нуклеотидов;
  • вторичной – спирально закрученной каждой нити и обеих около друг друга;
  • третичной – сложная конформационная глобула сильно спирализованной молекулы.

Таким образом то, что в состав ДНК входит сахар, основания и остатки кислоты является основой ее строения и почвой для реализации целого ряда взаимодействий и формирования химических связей.

Значение ДНК для организмов

Можно выделить несколько самых важных пунктов:

  1. Молекулы рассматриваемой кислоты входят в химический состав хромосом, определяющих индивидуальность всех живых организмов.
  2. ДНК – основа синтеза сложных полипептидных цепей, отвечающих за кодирование и передачу наследственных признаков.
  3. Дезоксирибонуклеиновая кислота – основа для транскрипции, то есть первичного синтеза РНК, впоследствии белка.

Такие процессы происходят во всех организмах. Это позволяет называть данную структуру универсальной единицей всего живого.

Репликация молекулы

Данный процесс представляет собой удвоение молекулы ДНК, протекающее самопроизвольно с затратой энергии в живых организмах. Основной компонент при этом – ДНК-полимераза, фермент, катализирующий и контролирующий весь синтез.

Суть репликации в том, чтобы каждая из нитей молекулы разделилась и удвоила свои линейные последовательности. В результате процесса образуются две новые молекулы ДНК, каждая из которых содержит одну старую полипептидную цепь, а вторую совершенно новую, построенную согласно принципу комплементарности.

Значение процесса – обеспечить потомство генетической информацией в полном объеме.

Источник: https://FB.ru/article/175682/kakoy-v-sostav-dnk-vhodit-sahar-himicheskie-osnovyi-stroeniya-dnk

Доктор-про
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: