Синтез запасов атф происходит в

Что такое молекула АТФ, какие соединения входят в её состав; строение, функции и роль в живых клетках

Синтез запасов атф происходит в

Важнейшим веществом в клетках живых организмов является аденозинтрифосфорная кислота или аденозинтрифосфат. Если ввести аббревиатуру этого названия, то получим АТФ (англ. ATP). Это вещество относится к группе нуклеозидтрифосфатов и играет ведущую роль в процессах метаболизма в живых клетках, являясь для них незаменимым источником энергии.

  • Строение АТФ
  • Роль АТФ в живом организме. Её функции
  • Как образуется АТФ в организме?
  • Вывод

Первооткрывателями АТФ стали учёные-биохимики гарвардской школы тропической медицины — Йеллапрагада Суббарао, Карл Ломан и Сайрус Фиске. Открытие произошло в 1929 году и стало главной вехой в биологии живых систем. Позднее, в 1941 году, немецким биохимиком Фрицем Липманом было установлено, что АТФ в клетках является основным переносчиком энергии.

Строение АТФ

Эта молекула имеет систематическое наименование, которое записывается так: 9-β-D-рибофуранозиладенин-5-трифосфат, или 9-β-D-рибофуранозил-6-амино-пурин-5-трифосфат.

Какие соединения входят в состав АТФ? Химически она представляет собой трифосфорный эфир аденозина — производного аденина и рибозы.

Это вещество образуется путём соединения аденина, являющегося пуриновым азотистым основанием, с 1-углеродом рибозы при помощи β-N-гликозидной связи. К 5-углероду рибозы затем последовательно присоединяются α-, β- и γ-молекулы фосфорной кислоты.

: немембранные органоиды клетки, их особенности.

Таким образом, молекула АТФ содержит такие соединения, как аденин, рибозу и три остатка фосфорной кислоты. АТФ — это особое соединение, содержащее связи, при гидролизе которых высвобождается большое количество энергии.

Такие связи и вещества называются макроэргическими.

Во время гидролиза этих связей молекулы АТФ происходит выделение количества энергии от 40 до 60 кДж/моль, при этом данный процесс сопровождается отщеплением одного или двух остатков фосфорной кислоты.

Вот как записываются эти химические реакции:

  • 1). АТФ + вода→АДФ + фосфорная кислота + энергия,
  • 2). АДФ + вода→АМФ + фосфорная кислота + энергия.

Энергия, высвобожденная в ходе указанных реакций, используется в дальнейших биохимических процессах, требующих определённых энергозатрат.

: примером рационального природопользования является что?

Роль АТФ в живом организме. Её функции

Какую функцию выполняет АТФ? Прежде всего, энергетическую. Как уже было выше сказано, основной ролью аденозинтрифосфата является энергообеспечение биохимических процессов в живом организме.

Такая роль обусловлена тем, что благодаря наличию двух высокоэнергетических связей, АТФ выступает источником энергии для многих физиологических и биохимических процессов, требующих больших энергозатрат. Такими процессами являются все реакции синтеза сложных веществ в организме.

Это, прежде всего, активный перенос молекул через клеточные мембраны, включая участие в создании межмембранного электрического потенциала, и осуществление сокращения мышц.

Кроме указанной, перечислим ещё несколько, не менее важных, функций АТФ, таких, как:

  • медиатор в синапсах и сигнальное вещество в других межклеточных взаимодействиях (функция пуринергической передачи сигнала),
  • регуляция различных биохимических процессов, таких, как усиление или подавление активности ряда ферментов путём присоединения к их регуляторным центрам (функция аллостерического эффектора),
  • участие в синтезе циклического аденозинмонофосфата (АМФ), являющегося вторичным посредником в процессе передачи гормонального сигнала в клетку (в качестве непосредственного предшественника в цепочке синтеза АМФ),
  • участие вместе с другими нуклеозидтрифосфатами в синтезе нуклеиновых кислот (в качестве исходного продукта).

Как образуется АТФ в организме?

Синтез аденозинтрифосфорной кислоты идёт постоянно, т. к. энергия организму для нормальной жизнедеятельности нужна всегда.

В каждый конкретный момент содержится совсем немного этого вещества — примерно 250 граммов, которые являются «неприкосновенным запасом» на «чёрный день».

Во время болезни идёт интенсивный синтез этой кислоты, потому что требуется много энергии для работы иммунной и выделительной систем, а также системы терморегуляции организма, что необходимо для эффективной борьбы с начавшимся недугом.

В каких клетках АТФ больше всего? Это клетки мышечной и нервной тканей, поскольку в них наиболее интенсивно идут процессы энергообмена.

И это очевидно, ведь мышцы участвуют в движении, требующем сокращения мышечных волокон, а нейроны передают электрические импульсы, без которых невозможна работа всех систем организма.

Поэтому так важно для клетки поддерживать неизменный и высокий уровень аденозинтрифосфата.

Каким же образом в организме могут образовываться молекулы аденозинтрифосфата? Они образуются путём так называемого фосфорилирования АДФ (аденозиндифосфата). Эта химическая реакция выглядит следующим образом:

АДФ + фосфорная кислота + энергия→АТФ + вода.

Фосфорилирование же АДФ происходит при участии таких катализаторов, как ферменты и свет, и осуществляется одним из трёх способов:

  • фотофосфорилирование (фотосинтез у растений) ,
  • окислительное фосфорилирование АДФ Н-зависимой АТФ-синтáзой, в результате которого основная масса аденозинтрифосфата образуется на мембранах митохондрий клеток (связано с дыханием клетки),
  • субстратное фосфорилирование в цитоплазме клетки в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений, не требующее участия мембранных ферментов.

Как окислительное, так и субстратное фосфорилирование использует энергию веществ, окисляющихся в процессе такого синтеза.

Вывод

Аденозинтрифосфорная кислота — это наиболее часто обновляемое вещество в организме.

Сколько в среднем живёт молекула аденозинтрифосфата? В теле человека, например, продолжительность её жизни составляет менее одной минуты, поэтому одна молекула такого вещества рождается и распадается до 3000 раз за сутки.

Поразительно, но в течение дня человеческий организм синтезирует около 40 кг этого вещества! Настолько велики потребности в этом «внутреннем энергетике» для нас!

Весь цикл синтеза и дальнейшего использования АТФ в качестве энергетического топлива для процессов обмена веществ в организме живого существа представляет собой саму суть энергетического обмена в этом организме. Таким образом, аденозинтрифосфат является своего рода «батарейкой», обеспечивающей нормальную жизнедеятельность всех клеток живого организма.

Источник: https://tvercult.ru/nauka/molekula-atf-v-biologii-sostav-funktsii-i-rol-v-organizme

Каково строение и функции атф

Синтез запасов атф происходит в

АТФ является важнейшим клеточным веществом также и потому, что относится к группе нуклеозидтрифосфатов, обеспечивая метаболизм живых клеток.

Первооткрывателем АТФ в клетке являются ученые-биохимики Суббарао, Ломан и Фиске. АТФ была открыта в 1929 году и ее исследования стали революционными в развитии биологии живых систем. Немного позднее в 1941 году Ф. Липман установил энергетическую функцию АТФ.

АТФ обладает определенными чертами строения:

  • представляет собой трифосфорный эфир аденозина;
  • образуется путём соединения аденина, являющегося пуриновым азотистым основанием;
  • соединяется с 1′-углеродом рибозы при помощи β-N-гликозидной связи.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

  • АТФ вода → АДФ фосфорная кислота энергия;
  • АДФ вода → АМФ фосфорная кислота энергия.

Общеизвестно, что в биоэнергетическом обмене веществ живых организмов важным является наличие двух основных моментов:

  • химическая энергия запасается путем образования АТФ при протекании катаболических реакций окисления органических субстратов;
  • химическая энергия утилизируется путем расщепления АТФ. Этот процесс сопряжен с эндергоническими реакциями анаболизма, а также другими процессами, которые также требуют энергетических затрат.

Выделяют три основных способа образования АТФ в клетке. А именно:

  • субстратное фосфорилирование, протекающее в цитоплазме клетке. Такие реакции получили название гликолиза или анаэробного этапа аэробного дыхания;
  • окислительное фосфорилирование;
  • фотофосфорилирование.

Где содержится АТФ, и сколько она живет?

АТФ находится в клетках человека, животных и даже растений. Самое большее количество АТФ встречается в мышцах.

Но АТФ содержится не во всей части клетки, а в митохондриях. Это такие миниатюрные, невидимые глазом, площадки для выработки энергии. В 1 клетке содержится до 2000 митохондрий.

Продолжительность жизни одной молекулы АТФ составляет меньше 1 минуты. За 1 сутки в организме человека рождается и распадается до 3000 молекул АТФ.

Пути синтеза АТФ и его роль

Процесс фотофосфорилирования — это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света.

Лень читать?

Задай вопрос специалистам и получи
ответ уже через 15 минут!

АТФ образуется во время световой стадии фотосинтеза – основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

Как уже отмечалось ранее, АТФ выполняет в клетке, прежде всего, энергетическую функции. Это обусловлено тем, что подобная молекула содержит две высокоэнергетические связи и обеспечивает многие физиологические и биохимические процессы. К подобным процессам можно отнести все реакции синтеза веществ в организме.

Реакции синтеза – это комплекс химических реакций, направленных на создание вещества с определенной степенью затраты энергии. При этом отмечается активный перенос молекул через клеточную мембрану, включая участие в создании межмембранного электрического потенциала. Также АТФ необходима для обеспечения процесса сокращения мышц.

Также к достаточно важным функциям АТФ, иллюстрирующим ее роль в клетке относят:

  • может являться медиатором в синапсах, сигнальным веществом в других клеточных взаимодействиях. Например, при пуринергической передаче сигнала;
  • АТФ регулирует биохимические процессы. Например, при участии АТФ происходит усиление и подавление активности некоторых ферментов с помощью присоединения к их регуляторным центрам молекулы;
  • участвует в создании циклического аденозинмонофосфата, который, в свою очередь, выступает посредником передачи гормональных сигналов в клетки;
  • наконец, АТФ участвует в синтезе нуклеиновых кислот (ДНК и РНК);
  • АТФ отвечает за обеспечение всех двигательных реакций организма, а именно от ее наличия зависит работа всех элементов опорно – двигательного аппарата.

Любая функция АТФ обусловлена тем, что ее используют для реализации жизненных клеточных процессов. Если АТФ не участвует в нем напрямую, то каким – либо образом обуславливает деятельность организма.

Синтез АТФ в клетке фактически происходит непрерывно, поскольку организму требуется энергия абсолютно на все процессы жизнедеятельности. Своеобразным «неприкосновенным» запасом АТФ в клетке является 250 граммов данного вещества.

Во время нарушения жизнедеятельности организма, при перенесении человеком каких-либо болезней синтез АТФ происходит намного активнее, поскольку необходимо «покрывать» затраты иммунной системы. Также активизируется система терморегуляции организма, на обеспечение работы которой также требуется большое количество энергии.

Больше всего АТФ содержат такие клетки, как мышцы и нервная ткань, энергообмен в которых протекает особенно быстро. Неизменный уровень АТФ в клетках достаточно важно поддерживать, поскольку при минимальном недостатке данного вещества происходят серьёзные нарушения любого физиологического процесса.

Другими словами, АТФ является маркером стабильности развития организма человека и многих высокоорганизованных животных.

К наиболее интересным фактам, касательно АТФ можно отнести следующие:

  • в клетке около 1 млрд молекул АТФ;
  • срок жизни молекул АТФ очень короткий;
  • синтез АТФ протекает достаточно быстро.

Подводя итог всему вышесказанному, можно сделать вывод о том, что АТФ является часто обновляемым веществом организма человека. Продолжительность жизни молекулы АТФ составляет менее одной минуты, поэтому одна молекула АТФ может зарождаться и распадаться до трех тысяч раз за сутки. В течение дня организм человека создает около 40 кг данного вещества.

На примере цикла синтеза АТФ и ее дальнейшего использования в качестве клеточного топлива рассматривают саму суть энергетического обмена внутри живого организма. Поэтому аденозинтрифосфорная кислота выполняет функцию «батарейки», которая обеспечивает нормальную жизнедеятельность клетки.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Образование АТФ возможно в ходе гликолиза, цикла трикарбоновых кислот или цикла Кребса. Такие процессы носят название субстратного фосфорилирования.

В ходе первого получают четыре молекулы АТФ, две молекулы пирувата или пировиноградной кислоты из глюкозы. Это бескислородное расщепление.

На обеспечение данного процесса затрачивается 2 АТФ, протекает он в цитоплазме или цитозоле. Цикл лимонной кислоты происходит на кристах (складки внутренней оболочки) митохондрий в ходе окисления пирувата.

При этом происходит отщепление одного атома углерода с образованием ацетилкоэнзима А и восстановление НАДН.

Далее синтезируется лимонная кислота при участии щавелевоуксусной кислоты. Цитрат превращается в цис-аконитат, который переходит в изоцитрат. К последнему присоединяется окисленный НАДН, который восстанавливается.

Отщепление водорода приводит к синтезу кетоглутарата, с ним снова соединяется окисленный НАДН и ацетилкоэнзим А. На этой стадии синтезируется сукцинил-коэнзим А, к которому присоединяется ГДФ (гуанозиндифосфат).

Данная молекула восстанавливается в ГТФ (гуанозинтрифосфат) плюс образуется сукцинат. Он превращается в фумарат, затем малат. В этой реакции синтезируется оксалоацетат и восстановленный НАДН.

Так, цикл Кребса возвращается к цитрату. На каждый цикл затрачиваются 2 молекулы АТФ, синтезируется 6 НАДН в цикле и 4 на подготовительных этапах.

Последняя энергетически приравнивается к трем молекулам АТФ.

В синтезе цитрата задействованы также два ФАДН2 (флавинадениндинуклеотид), на каждую приходится по две АТФ. Таким образом, синтезируемое количество АТФ соответствует 38 молекулам с позиций биологии и биохимии. Однако следует помнить, что это теоретическое число, необходимое для дыхания клетки. Все реакции цикла Кребса катализируются ферментами.

роль – поддержание клеточного дыхания, направленного на рост клетки, синтез новых веществ.

Из чего АТФ вырабатывает энергию?

АТФ вырабатывает энергию из глюкозы, жиров и белков, путем присоединения кислорода, которым мы дышим. В результате получается энергия, углекислый газ и вода.

АТФ вырабатывает энергию из углеводов, жиров и белков

Молекулы АТФ вырабатывают энергию в 3 режимах:

  • Фосфагенный – кратковременный (около 10 сек.) и мощный выброс энергии, его хватает на короткий забег или 1 физическое упражнение, поднятие.
  • Режим гликогена с молочной кислотой, более медленный выброс энергии, ее хватает на 1,5-2 минуты. За это время можно пробежать около 400 м. Дальше, в этом режиме, физические нагрузки будут очень болезненными, из-за поступления в мышцы большого количества молочной кислоты.
  • Режим аэробного дыхания. Если нагрузки продолжаются больше 2 минут, включается режим аэробного дыхания. Нагрузки могут длиться до нескольких часов. Молекулы АТФ задействуют в организме все углеводы, белки и жиры для получения энергии.

Процесс переноса электронов осуществляется посредством дыхательной цепи. Основную роль здесь играет восстановленный НАДН (Никотинамидадениндинуклеотид). Данное вещество окисляется, отдавая водород. Также на дыхательной цепи синтезируется АТФ. Фосфорилирование происходит на внутренней стороне мембраны митохондрии при помощи АТФ-синтазы.

Какие соединения входят в состав АТФ

Строение АТФ и биологическая роль тесно связаны. В состав АТФ входят аденозин, три остатка фосфорной кислоты. Связи, существующие между аминокислотой и фосфатом, подвергаются гидролизу в присутствии воды, в результате образуется АДФ (аденозиндифосфат), фосфорная кислота. Этот процесс происходит с высвобождением энергии.

Энергообразование происходит за счет разрыва макроэргических связей АТФ (обозначаемых в формуле знаком тильда). Сам аденозин состоит из аденина – пуринового нуклеотида и рибозы. Первая участвует в синтезе ДНК, вторая – составляющая структуры РНК.

Функции АТФ

Важнейшая функция – участие в энергетическом обмене. Энергия, выделяемая в ходе данных превращений, вновь идет на синтез АТФ. При этом 40% рассеивается в виде тепла. 

Поскольку для поддержания любых процессов жизнедеятельности необходимы энергозатраты АТФ – аккумулятор клетки, универсальный источник запасов энергии. Гликолиз активно протекает при физической нагрузке, в мышцах. Субстратное фосфорилирование также осуществляется из креатинфосфата других органических веществ.

Важно подчеркнуть, что цикл Кребса протекает при расщеплении как углеводов, так и белков и жиров.

Если в качестве «топлива» клетка использует не углевод, гликолиз не протекает (отсюда не происходит затрата двух молекул АТФ с образованием четырех).

Но цикл трикарбоновых кислот протекает одинаково, так как главную роль там играет ацетил-коэнзим А. При кислородном голодании клетка перестраивается на гликолитический путь.

Источник: https://vsem-interesno.net.ru/kakovo-stroenie-funktsii/

Атф и митохондрии

Синтез запасов атф происходит в

Каждое живое существо должно получать энергию из окружающей среды (например, в форме солнечного излучения или органических продуктов питания).

Эта энергия требует для биосинтеза (анаболизма) огромного числа химических соединений и биополимеров в соответствии с определенной генетической программой.

Сама энергия нужна для активной передачи молекул и ионов через мембраны, для движения и для передачи нервных импульсов. Наука, которая изучает поток и использование энергии в живых существах, называется «биоэнергетика» (био- + энергия).

Роль АТФ в энергетическом балансе

АТФ является основной молекулой энергии в живых системах. Он участвует в различных химических процессах, от химического биосинтеза до движения ресничек, сокращения мышц, активного транспорта молекул через клеточную мембрану или распространения электрического импульса через нервные волокна.

Производство и потребление энергии происходит через сеть ферментативных реакций (метаболизм).

Центральным химическим соединением в метаболизме является аденозинтрифосфат (АТФ), который образуется в результате метаболических реакций (катаболизм) путем фосфорилирования аденозиндифосфата (АДФ) с образованием энергии около 30 кДж / моль (термодинамика).

Большая часть АТФ производится в результате процессов в митохондриях (окислительного фосфорилирования). При использовании этой энергии в биологических процессах АТФ обычно гидролизуется до фосфата и АДФ (аденозинДИфосфата).

Вся биосинтетическая деятельность, как и многие другие клеточные действия, требует энергии. В основном для клеточных активностей источником энергии является именно АТФ.

Молекула АТФ состоит из аденина, рибозы и трех фосфатных групп (ФГ).

Последние с сильным отрицательным зарядом связаны двумя ковалентными высокоэнергетическими связями, которые при гидролизе выделяют относительно много энергии. Это демонстрирует важное свойство АТФ.

Поэтому без преувеличения можно сказать, что наиболее важным энергетическим соединением в клетке является трифосфат аденозина (АТФ), который по своему химическому составу является нуклеотидом.

Молекула АТФ состоит из:

  • – азотно-аденинового основания пурина;
  • – пентозы, рибозы и моносахариды;
  • – трех фосфатных групп, обозначенных как альфа, бета и гамма (начиная с рибозы).

Синтез АТФ в организме

АТФ чаще всего производится в митохондрии, в основном в результате расщепления глюкозы и жирных кислот в процессе, называемом окислительным фосфорилированием; разложение 1 молекулы глюкозы в митохондрии высвобождает 36 молекул АТФ. Также АТФ синтезируется в хлоропластах, при фотосинтезе в процессе фотосинтетического фосфорилирования.

Использование АТФ в клетке

АТФ не может храниться в качестве резерва, поэтому он расходуется после его синтеза путем дефосфорилирования с помощью фермента АТФазы. Две конечные фосфорные группы связаны богатыми энергией ковалентными связями.

Когда эти связи разрушаются, высвобождается относительно большое количество энергии.

Если от АТФ освободить один конец ФГ, то образуется аденозин дифосфат (АДФ), освободить другой – получится аденозинмонофосфат (АМФ).

Фосфорная группа, высвобождаемая из АТФ или АДФ, богата энергией и, связываясь с соединением, обогащает ее энергией (процесс, называемый фосфорилированием). Таким образом, энергия от АТФ используется в процессах анаболизма.

АТФ создается в качестве основного энергетического продукта процесса разложения пищевых ингредиентов в процессе окисления. Часть энергии, выделяемой в этих процессах, сохраняется в форме АТФ, а остальная часть используется в форме тепла.

Полученный таким образом АТФ используется для взаимодействия со всеми типами клеток. Только около 1/3 АТФ расходуется на реакции анаболизма.

Остальная энергия расходуется на движение, сокращение мышц, транспортировку вещества через клеточную мембрану и т. д.

Фосфорилирование, регенерация АТФ.

Восстановление (синтез) АТФ реализуется путем связывания ФГ сначала с АМФ, что приводит к АДФ, а затем из АТФ под контролем фермента АТФ-синтазы.

Это возможно благодаря тепловым реакциям, в которых энергоемкие (анаболические) реакции связаны с энерговыделительными (катаболическими) реакциями. Энергия, выделяемая при катаболизме, используется для повторного синтеза АТФ из АДФ.

Следовательно, система АТФ / АДФ служит универсальным способом обмена энергией, который балансирует между выделяемыми и потребляющими энергию реакциями.

Функциональные характеристики АТФ.

Химическая связь, представляющая собой сумму сил, которые удерживают вместе атомы в молекуле, является стабильной конфигурацией, и для разрыва старой связи и образования новой требуется энергия.

Ферменты значительно снижают потребность в активации большого количества энергии, но для того, чтобы химические реакции происходили в живых организмах, необходимо, чтобы энергия связи в продуктах реакции всегда была меньше энергии связи реагентов.

Молекула, наиболее часто участвующая в тепловых реакциях, – АТФ. Внутренняя структура молекул АТФ отлично подходит для этой роли в живых системах. В лабораторных условиях при удалении третьей фосфатной группы образуются АДФ и фосфат, и выделяется около 7 ккал (30 кДж) на моль АТФ. Удаление второй фосфатной группы дает AMФ и фосфат, высвобождая такое же количество энергии.

Энергия, выделяемая при удалении фосфатных групп, не только возникает из высокоэнергетических связей, но также является результатом перераспределения орбит в молекулах АТФ или АДФ.

Каждая фосфатная группа несет отрицательный заряд и поэтому имеет тенденцию отталкиваться от другой такой группы.

Когда фосфатная группа удаляется, происходит изменение конфигурации электронов, в результате чего получается структура с меньшей энергией.

В живых системах АТФ также гидролизуется до АДФ. Гидролиз АТФ является, например, быстрым способом выработки тепла у животных, которые просыпаются от зимней спячки.

Однако обычно конечный продукт не просто удаляется, а переносится через фермент (киназу) в другую молекулу (фосфорилирование).

Эта реакция также передает часть энергии от высокоэнергетической связи фосфорилированному соединению, которое, таким образом, обогащается энергией при реакции.

Энергия, выделяемая в реакциях клеточного метаболизма, таких как расщепление глюкозы, используется для повторного синтеза АТФ из молекул АДФ. Основными механизмами синтеза АТФ в клетке являются окислительное фосфорилирование в процессе клеточного дыхания (на внутренней стороне митохондриальной мембраны) и фосфорилирование в процессе фотосинтеза.

Митохондрии

Митохондрии представляют собой мембранные органеллы, присутствующие в клетках практически всех эукариотических организмов.

Митохондрии заключены в две мембраны: внешняя, находящаяся в контакте с цитоплазмой, и мембрана, ограничивающая внутреннюю часть митохондрий. Между этими двумя мембранами находится межмембранное пространство.

Внутренняя часть митохондрий заполнена матриксом. Типичная эукариотическая клетка содержит около 2000 митохондрий.

Внешняя митохондриальная мембрана определяет форму этой органеллы и, благодаря наличию каналообразующего белка (порина), проницаема для определенных молекул.

Внутренняя митохондриальная мембрана имеет в несколько раз большую площадь поверхности, чем наружная мембрана. Ее поверхность значительно увеличивают кристы, ориентированные к центру органеллы.

Кристы могут различаться по количеству, размеру и форме, при этом они имеют частицы, прикрепленные к ним с помощью коротких ручек.

Эти частицы содержат АТФ-синтазы, ферментный комплекс, участвующий в синтезе АТФ.

Матрикс заполняет внутреннюю часть митохондрий и представляет собой смесь нескольких сотен ферментов, которые преобразуют продукты метаболизма углеводов, липидов и белков через цикл Кребса в углекислый газ и воду с выделением энергии в виде молекул АТФ. В этом процессе электроны переносятся по дыхательной электронной цепи, и происходит синтез высокоэнергетического фосфатного соединения, АТФ (окислительное фосфорилирование).

Источник: http://medicine-simply.ru/just-medicine/atf-i-mitohondrii

Синтез АТФ – структура, функции и пути образования аденозинтрифосфорной кислоты

Синтез запасов атф происходит в

Синтез АТФ – процесс, направленный на поддержание жизнедеятельности клетки, сопровождаемый образованием энергии. Образование АТФ происходит на внутренней мембране митохондрий, которые являются энергетическим аккумулятором клетки.

Расшифровка АТФ

Аденозинтрифосфорная кислота или АТФ – необходимое условие для существования 9 из 10 клеток с аэробным дыханием. Получение энергии происходит при фосфорилировании, присоединении остатка фосфорной кислоты. На одну молекулу АТФ приходится около 7,3 килокалории энергии.

Образование энергии

Макроэргическая связь заключена между общими электронами остатков фосфорной кислоты (что и удерживает их вместе). Кислород и фосфор образуют общую электронную пару – высокоэнергетическую. Поэтому при отщеплении снижается энергия электронов: отщепляется фосфат и выделяется ее избыточное количество.

Процесс переноса электронов осуществляется посредством дыхательной цепи. Основную роль здесь играет восстановленный НАДН (Никотинамидадениндинуклеотид). Данное вещество окисляется, отдавая водород. Также на дыхательной цепи синтезируется АТФ. Фосфорилирование происходит на внутренней стороне мембраны митохондрии при помощи АТФ-синтазы.

Последняя выступает переносчиком ионов водорода, что необходимо в связи с существованием градиента на внутренней и внешней мембранах. Перенос водорода через мембрану – хемиосмос, ведет к возникновению связи между АДФ и остатком фосфорной кислоты, иначе говоря, к окислительному фосфорилированию.

Заключение

АТФ – это особое соединение, содержащее связи, при гидролизе которых высвобождается огромное количество энергии.

Называя синтезом АТФ процесс, выполняющий функцию поддержания жизнедеятельности клетки, нельзя не понять, каково значение этого явления. В действительности количество синтезируемого аденозинтрифосфата может быть меньше 38 молекул.

Суть процесса заключается в синтезе макроэргических веществ, поступающих в дыхательную цепь переноса электронов.

Источник: https://nauka.club/biologiya/sintez-atf.html

Атф энергия мышц

Синтез запасов атф происходит в
sh: 1: –format=html: not found

Молекула АТФ (аденозин трифосфат) является универсальным источником энергии, обеспечивая не только работу мышц, но и протекание многих других биологических процессов, включая и рост мышечной массы (анаболизм). 

Молекула АТФ состоит из аденина, рибозы и трех фосфатов. Энергия высвобождается при отделении от молекулы одного из трех фосфатов и превращением АТФ в АДФ (аденозин дифосфат). При необходимости может отделяться еще один фосфорный остаток с получением АМФ (аденозин монофосфат) и повторным выбросом энергии.

Наиболее важным качеством является то, что АДФ может быстро восстанавливаться до полностью заряженной АТФ, что объясняется невысокой стабильностью связей – например, жизнь молекулы АТФ составляет в среднем менее одной минуты, а за сутки с этой молекулой может происходить до 3000 циклов перезарядок. 

Выделяемая АТФ энергия имеет большую величину, потому относится к макроэргическим соединениям (высокоэнергетические соединения). Естественно, при восстановлении ее организм вынужден будет затратить такое же количество энергии. 

Общий объем АТФ стабилен и обычно не превышает 0.5 % от массы мышц. Сам по себе объем увеличить не удастся, но можно улучшить скорость восстановления молекулы, что напрямую скажется на выносливости и силе спортсмена. 

Восстановление АТФ происходит несколькими способами – вначале физической активности для перезарядки расходуется большое количество ресурсов, но и скорость восстановления АТФ очень высока, за тем организм переходит на все более экономичные способы ресинтеза, в конечном итоге мышечная система имеет возможность функционировать длительное время при умеренном синтезе АТФ.

Синтез АТФ

Прежде всего следует сказать, что качественный и быстрый синтез АТФ возможен только при поддержании высокого уровня тестостерона, поскольку мужские гормоны являются главными стимуляторами биологических процессов направленных на повышение силы и выносливости.

В первые 10 секунд физической нагрузки синтез АТФ происходит быстро и легко при использовании креатин фосфата, запасы которого в мышцах можно увеличить до определенной величины. Хорошо подготовленный спортсмен может показать до 20 секунд максимальной производительности (тяжелая атлетика, бег на короткие дистанции).

Когда запасы фосфата креатина падают, включается анаэробная выносливость.

Для синтеза АТФ используется много энергии, которую организм получает из запасов гликогена, восстановление АТФ происходит медленнее, но процесс активно продолжается более 2 минут.

Положительная сторона – не требуется участия кислорода, отрицательная – вырабатывается много молочной кислоты

Анаэробный метаболизм – основа силовой выносливости. 

Когда заметно истощаются запасы гликогена усиливается аэробный метаболизм, который обеспечивает медленное, но достаточно длительное производство АТФ при очень экономном расходе глюкозы. Этот процесс полностью запускается уже через три минуты интенсивной нагрузки.

Обеспечение энергией в этом случае требует участия кислорода. Для производства АТФ используются сначала углеводы, за тем жиры. Жиры могут применяться и ранее вместе с углеводами – в стрессовых состояниях.

Когда естественные запасы энергии подходят к концу организм берет в оборот и белки мышц (в первую очередь те, что возможно быстро восстановить). 

Наибольший выход молекул АТФ происходит при расщеплении жирных кислот

АТФ в бодибилдинге

Организм обычно бережно расходует АТФ, потому спортсмен не может потратить весь запас энергии в одном интенсивном подходе.

Если тело получит небольшой перерыв , запасы АТФ частично восстановятся и можно будет снова расходовать энергию, многократно повторяя подходы можно добиться значительной нагрузки на мышцы, но и заметно исчерпать АТФ. 

Для полного восстановления АТФ требуется длительное время, потому в процессе занятия от одного упражнения к другому общий уровень энергии постоянно снижается.

Согласно современным исследованиям сильное утомление приходит уже через час интенсивного тренинга, что вызывает быстрое повышение кортизола (гормон усталости) в крови и занятия с этого момента приносят скорее вред , чем пользу. 

После тренировки тело продолжает расходовать АТФ для восстановления химического баланса и прочих процессов, включая затраты на рост мышц. Только после завершения всех восстановительных процессов организм сможет восполнить достаточный уровень АТФ.

В зависимости от интенсивности тренировки, питания, уровня тестостерона, психологического состояния и генетических особенностей полное восстановление уровня АТФ может занять от 1 до 4 суток, потому стандартные 3 тренировки в неделю это скорее усредненный расчет.

Индивидуально же частоту занятий нужно подбирать по общему самочувствию (с ленью не путать). 

Постоянное недостаточное восстановление уровня АТФ со временем однозначно приводит к состоянию перетренированности, требующему длительного и серьезного лечения и анализа своих тренировочных программ.

Молекула АТФ (аденозин трифосфат) является универсальным источником энергии, обеспечивая не только работу мышц, но и протекание многих других биологических процессов, включая и рост мышечной массы (анаболизм). 

Молекула АТФ состоит из аденина, рибозы и трех фосфатов. Энергия высвобождается при отделении от молекулы одного из трех фосфатов и превращением АТФ в АДФ (аденозин дифосфат). При необходимости может отделяться еще один фосфорный остаток с получением АМФ (аденозин монофосфат) и повторным выбросом энергии.

Наиболее важным качеством является то, что АДФ может быстро восстанавливаться до полностью заряженной АТФ, что объясняется невысокой стабильностью связей – например, жизнь молекулы АТФ составляет в среднем менее одной минуты, а за сутки с этой молекулой может происходить до 3000 циклов перезарядок. 

Выделяемая АТФ энергия имеет большую величину, потому относится к макроэргическим соединениям (высокоэнергетические соединения). Естественно, при восстановлении ее организм вынужден будет затратить такое же количество энергии. 

Общий объем АТФ стабилен и обычно не превышает 0.5 % от массы мышц. Сам по себе объем увеличить не удастся, но можно улучшить скорость восстановления молекулы, что напрямую скажется на выносливости и силе спортсмена. 

Восстановление АТФ происходит несколькими способами – вначале физической активности для перезарядки расходуется большое количество ресурсов, но и скорость восстановления АТФ очень высока, за тем организм переходит на все более экономичные способы ресинтеза, в конечном итоге мышечная система имеет возможность функционировать длительное время при умеренном синтезе АТФ.

Доктор-про
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: