Соединение двух нейронов

Содержание
  1. Нейропластика и нейробика: упражнения для мозга (часть I)
  2. Из чего состоит мозг
  3. Роль серого вещества
  4. Что такое нейропластичность 
  5. Что такое нейропластика
  6. Обучение мозга: быстрые и медленные изменения
  7. Зависимость нейропластичности от возраста
  8. Спорт и нейропластичность мозга: тренировка в кресле
  9. Правило 10 000 часов: важность повторений
  10. Делаем мозг послушным
  11. Нейронные связи головного мозга: формирование, развитие рецепторов, улучшение работы головного мозга и создание новых нейронных связей
  12. “Проводка”
  13. Нейрон и синапсы
  14. Развитие нейронных сетей
  15. Нейропластичность
  16. Физические нагрузки
  17. Когнитивные нагрузки
  18. Образ жизни
  19. Резюме
  20. Нейроны головного мозга – строение, классификация и проводящие пути
  21. Отростки
  22. Метаболизм в нейроне
  23. Функции нейрона
  24. Классификация нейронов
  25. Виды нейронов
  26. Развитие и рост нейронов
  27. Проводящие пути
  28. Проводящие пути головного мозга
  29. Взаимодействие с нейромедиаторами
  30. Восстанавливаются ли нервные клетки
  31. Влияние алкоголя на головной мозг
  32. Как создать новые нейронные связи? Какие факторы способствуют нейрогенезу
  33. Немного полезной информации о нейронах
  34. Как нейронные связи влияют на наше восприятие окружающего мира?
  35. Нервные ткани
  36. Нейрон
  37. Миелиновая оболочка
  38. Нейроглия
  39. Синапс
  40. Яд кураре
  41. Нервы и нервные узлы
  42. Болезни нервной системы

Нейропластика и нейробика: упражнения для мозга (часть I)

Соединение двух нейронов

Пластика в общем смысле подразумевает податливость, гибкость. Глина по своим свойствам пластична; тело человека тоже пластично — мышцы накачиваются, связки тянутся, жировая ткань то накапливается, то сжигается.

Но как применить это понятие к мозгу? Как соотносятся абстрактное мышление и вполне материальный «грецкий орех» в нашем черепе? И наконец, существует ли какая-то особая зарядка для ума?

Из чего состоит мозг

Из нейронов, особых нервных клеток, уникальных по своему строению: с множеством коротких щупалец и одним длинным. Короткие — дендриты, длинный — аксон.

Дендриты связывают соседние нейроны, аксоны — разные части нервной системы, иногда очень отдаленные. Например, нейроны в голове могут дотянуться аксонами до поясницы, а нейроны поясницы – до пальцев ног.

Место физического контакта между отростками двух нейронов называется синапс. Это соединение неплотное, в нем есть щель. Сигнал от одной клетки к другой передается через ионы или специальные белки-посредники.

В мозге выделяют белое и серое вещества:

  • Белое вещество состоит из аксонов. Его функция — доставлять сигналы по телу и согласовывать работу всей нервной системы.
  • Тела нейронов и дендриты образуют серое вещество. На нем остановимся подробнее.

Роль серого вещества

Откровенно говоря, оно скорее серо-коричневое — бурый оттенок дают кровеносные сосуды, несущие питательные вещества к нейронам. Серое вещество отвечает за запоминание, эмоции, речь, движения, а также обработку данных от органов чувств.

Все наши представления о мире хранятся в виде связей между нейронами. Каждый новый факт запускает создание новых ассоциативных связей.

Чем больше ассоциаций образует одно воспоминание, тем оно крепче. Если вы что-то увидели, для этого «чего-то» образовались связи в зрительной области мозга. Если подключить уши, нос, тактильные ощущения, добавить радость, отчаяние или любое другое сильное чувство, тогда возникнет больше разнообразных ассоциаций — образ крепче осядет в голове и вспоминать его будет легче.

Что такое нейропластичность 

Впервые это понятие использовал польский нейробиолог Ежи Конорский больше 70 лет назад. Если коротко, нейропластичность — это способность образовывать новые ассоциативные связи. Причем не какие угодно, а те, что помогают нам приспособиться к меняющимся условиям.

Что такое нейропластика

Это понятие объединяет все идеи, технологии и подходы, которые позволяют стимулировать пластичность мозга и тем самым прокачивать его.

На нейропластичность влияют пять факторов:

  • Количество нервных клеток
  • Количество отростков на них
  • Количество синапсов (напоминаем: это физические контакты между нейронами)
  • Количество сигнальных белков в синапсах
  • Количество церебральных кровеносных сосудов

С первыми четырьмя пунктами ясно: чем больше клеток, отростков, синапсов и синаптических белков, тем богаче «инфраструктура» для возникновения ассоциативных связей. По пятому пункту нужно небольшое пояснение.

Для эффективной работы нейронам нужна энергия, а для этого нужно хорошее кровоснабжение. Если его нет, то активность нервных клеток падает. Такое часто бывает после черепно-мозговых травм, нарушающих приток крови. Поэтому количество кровеносных сосудов — тоже один из ключевых факторов пластичности.

Обучение мозга: быстрые и медленные изменения

Растить новые дендриты, образовывать новые синапсы или плести сеть кровеносных сосудов — все эти анатомические изменения требуют времени. Они важны, на них можно влиять (чуть позже расскажем как), однако идут они фоном. Но заметное улучшение «здесь и сейчас» вы вряд ли заметите. Другое дело — обучение с помощью синаптических белков.

Если какая-то информация снова и снова активирует одну и ту же ассоциативную связь, значит, она важна. Для ее запоминания нужный контакт между нейронами усиливается: в синаптической щели становится больше белков-посредников, сигнал проходит быстрее.

Если эту информацию надо запомнить еще лучше, старые синаптические белки заменяются на новые, с более высоким уровнем активности. Такое быстрое обучение можно пройти за пару недель.

Зависимость нейропластичности от возраста

«Впитывает как губка; ловит на лету», — так чаще говорят о детях. Пожилым людям учиться явно сложнее, и этому есть биологическое объяснение.

Окна пластичности – периоды в жизни, когда мозг наиболее восприимчив к влиянию окружающего мира и легче создает нейронные связи.

В раннем возрасте есть критические периоды для разных функций: сначала зрение и слух, затем речь и моторные навыки, после – высшие когнитивные функции. В это время активны преимущественно возбуждающие нейроны. Потом развивается система торможения, и окно закрывается. Однако новейшие исследования показывают, что закрытие окна — не приговор.

Во-первых, у взрослых образуются новые нейроны. Про этот процесс пока можно сказать немного, он еще изучается, но открытия обнадеживают.

Во-вторых, создавать новые нейронные ассоциации можно и в пожилом возрасте, причем вплоть до восстановления всех моторных навыков с нуля. Об этом говорит опыт реабилитации пациентов после инсульта.

Спорт и нейропластичность мозга: тренировка в кресле

Кстати о моторных навыках. Пластичность касается не только высшей нервной деятельности, но и координации движений.

Есть даже такая интересная методика — мысленное воспроизведение движений. Доказано: прокручивая в голове очередной прием, спортсмен активирует те же нейронные цепи, что и при реальных движениях. Получается, что даже сидя в кресле после тренировки, вы можете развивать моторную память.

Правило 10 000 часов: важность повторений

Правило звучит так: каждый гений потратил не меньше 10 000 часов на тренировку навыков, прежде чем достичь успеха. Это три с половиной года ежедневных восьмичасовых тренировок. Но ведь не всем надо становиться гениями. Большинству достаточно просто держать свой мозг в тонусе. Для этого хватит и меньше 10 000 часов.

Когда нейроны образуют новые ассоциативные связи, они выделяют нейротрофины — особые белки, положительно влияющие на жизнеспособность, развитие и активность соседних нейронов. Получается положительная цепная реакция, в которой нервные клетки поддерживают друг друга. 

Концентрация нейротрофинов с возрастом снижается. Но если регулярно нагружать мозг новыми впечатлениями и информацией, он будет более сфокусированным и управляемым.

Делаем мозг послушным

Доказано, что на факторы нейропластичности можно влиять, причем простыми и понятными средствами. 

  • Физические упражнения, особенно аэробные, способствуют созданию новых кровеносных сосудов.
  • Когнитивные упражнения форсируют ветвление дендритов и образование новых синапсов.
  • Вдобавок, как мы уже говорили, любые упражнения включают ту самую цепную реакцию с нейрофинами, а значит, делают ум более гибким и подвижным.

Именно на этих принципах основана нейробика — комплекс физических и когнитивных упражнений, с помощью которых можно развивать мозг и поддерживать его активность. Важно задействовать все органы чувств: новый зрительный образ, музыка, незнакомый запах или вкус — нейронам нужно все.

Еще раз: нейробика включает только упражнения, а нейропластика — упражнения, технологии, препараты, даже диеты (например, MIND-диета).

В следующей статье из этого цикла мы подробно расскажем о нейробике. А если увидим интерес к этой теме, то напишем и третью часть про генетические основы нейропластичности.

Источник: https://zen.yandex.by/media/id/5b8d0f6db4775b00a976484a/neiroplastika-i-neirobika-uprajneniia-dlia-mozga-chast-i-5e1c157f6f5f6f00ae02ec8c

Нейронные связи головного мозга: формирование, развитие рецепторов, улучшение работы головного мозга и создание новых нейронных связей

Соединение двух нейронов

Нейронные связи головного мозга обуславливают сложное поведение. Нейроны — маленькие вычислительные машины, способные оказывать влияние, только объединившись в сети.

Контроль простейших элементов поведения (например, рефлексов) не требует большого количества нейронов, но даже рефлексы часто сопровождает осознание человеком срабатывания рефлекса. Сознательное же восприятие сенсорных стимулов (и все высшие функции нервной системы) зависит от огромного числа связей между нейронами.

Нейронные связи делают нас такими, какие мы есть. Их качество влияет на работу внутренних органов, на интеллектуальные способности и эмоциональную стабильность.

“Проводка”

Нейронные связи головного мозга — проводка нервной системы. Работа нервной системы основана на способности нейрона воспринимать, обрабатывать и передавать информацию другим клеткам.

Информация передается через нервный импульс. Поведение человека и функционирование его организма полностью зависит от передачи и получения импульсов нейронами через отростки.

У нейрона два типа отростков: аксон и дендрит. Аксон у нейрона всегда один, именно по нему нейрон передает импульс другим клеткам. Получает же импульс через дендриты, которых может быть несколько.

К дендритам “подведено” множество (иногда десятки тысяч) аксонов других нейронов. Дендрит и аксон контактируют через синапс.

Нейрон и синапсы

Щель между дендритом и аксоном — синапс. Т.к. аксон “источник” импульса, дендрит “принимающий”, а синаптическая щель — место взаимодействия: нейрон, от которого идет аксон, называют пресинаптическим; нейрон, от которого идет дендрит, — постсинаптическим.

Синапсы могут формироваться и между аксоном и телом нейрона, и между двумя аксонами или двумя дендритами. Многие синаптические связи образованы дендритным шипиком и аксоном. Шипики очень пластичны, обладают множеством форм, могут быстро исчезать и формироваться. Они чувствительны к химическим и физическим воздействиям (травмы, инфекционные заболевания).

В синапсах чаще всего информация передается посредством медиаторов (химических веществ). Молекулы медиатора высвобождаются на пресинаптической клетке, пересекают синаптическую щель и связываются с мембранными рецепторами постсинаптической клетки. Медиаторы могут передавать возбуждающий или тормозящий (ингибирующий) сигнал.

Нейронные связи головного мозга представляют собой соединение нейронов через синаптические связи. Синапсы — функциональная и структурная единица нервной системы. Количество синаптических связей — ключевой показатель для работы мозга.

Рецепторы вспоминают каждый раз, когда говорят про наркотическую или алкогольную зависимость. Почему же человеку необходимо руководствоваться принципом умеренности?

Рецептор на постсинаптической мембране — белок, настроенный на молекулы медиатора.

Когда человек искусственно (наркотиками, например) стимулирует выброс медиаторов в синаптическую щель, синапс пытается вернуть равновесие: снижает количество рецепторов или их чувствительность.

Из-за этого естественные уровни концентрации медиаторов в синапсе перестают оказывать действие на нейронные структуры.

Например, курящие люди никотином изменяют восприимчивость рецепторов к ацетилхолину, происходит десенсибилизация (уменьшение чувствительности) рецепторов.

Естественный уровень ацетилхолина оказывается недостаточным для рецепторов с пониженной чувствительность. Т.к.

ацетилхолин задействован во многих процессах, в том числе, связанных с концентрацией внимания и ощущением комфорта, курящий не может получить полезные эффекты работы нервной системы без никотина.

Впрочем, чувствительность рецепторов постепенно восстанавливается. Хотя это может занимать долгое время, синапс приходит в норму, и человеку больше не требуются сторонние стимуляторы.

Развитие нейронных сетей

Долговременные изменения нейронных связей происходят при различных болезнях (психических и неврологических — шизофрения, аутизм, эпилепсия, болезнях Хантингтона, Альцгеймера и Паркинсона). Синаптические связи и внутренние свойства нейронов изменяются, что приводит к нарушению работы нервной системы.

За развитие синаптических связей отвечает активность нейронов. “Используй или потеряешь” — принцип, лежащий в основе нейронных сетей мозга. Чем чаще “действуют” нейроны, тем больше между ними связей, чем реже, тем меньше связей. Когда нейрон теряет все свои связи, он погибает.

Некоторые авторы высказывают и другие идеи, которые отвечают за регуляцию развития нейронных сетей. M. Butz связывает образование новых синапсов с тенденцией мозга поддерживать “привычный” уровень активности.

Когда средний уровень активности нейронов падает (например, вследствие травмы), нейроны строят новые контакты, с количеством синапсов растет активность нейронов.

Верно и обратное: как только уровень активности становится больше привычного уровня, количество синаптических соединений уменьшается.

Подобные формы гомеостаза часто встречаются в природе, например, при регуляции температуры тела и уровня сахара в крови.

М. Бутс M. Butz отметил:

…формирование новых синапсов обусловлено стремлением нейронов поддерживать заданный уровень электрической активности…

Генри Маркрам, который участвует в проекте по созданию нейронной симуляции мозга, подчеркивает перспективы развития отрасли для изучения нарушения, восстановления и развития нейронных связей. Группа исследователей уже оцифровала 31 тысячу нейронов крысы. Нейронные связи мозга крысы представлены в видео ниже.

Нейропластичность

Развитие нейронных связей в головном мозге сопряжено с созданием новых синапсов и модификацией существующих. Возможность модификаций обусловлена синаптической пластичностью — изменением “мощности” синапса в ответ на активацию рецепторов на постсинаптической клетке.

Человек может запоминать информацию и обучаться благодаря пластичности мозга. Нарушение нейронных связей головного мозга вследствие черепно-мозговых травм и нейродегенеративных заболеваний благодаря нейропластичности не становится фатальным.

Нейропластичность обусловлена необходимостью изменяться в ответ на новые условия жизни, но она может как решать проблемы человека, так и создавать их. Изменение мощности синапса, например, при курении — это тоже отражение пластичности мозга. От наркотиков и обсессивно-компульсивного расстройства так сложно избавиться именно из-за неадаптивного изменения синапсов в нейронных сетях.

На нейропластичность большое влияние оказывают нейротрофические факторы. Н. В. Гуляева подчеркивает, что различные нарушения нейронных связей происходят на фоне снижения уровней нейротрофинов. Нормализация уровня нейротрофинов приводит к восстановлению нейронных связей головного мозга.

Все эффективные лекарства, используемые для лечения болезней мозга, независимо от их структуры, если они эффективны, они тем или иным механизмом нормализуют локальные уровни нейротрофических факторов.

Оптимизация уровней нейротрофинов пока не может осуществляться путем прямой их доставки в мозг. Зато человек может опосредованно влиять на уровни нейротрофинов через физические и когнитивные нагрузки.

Физические нагрузки

Обзоры исследований показывают, что упражнения улучшают настроение и познавательные способности. Данные свидетельствуют о том, что эти эффекты обусловлены изменением уровня нейротрофического фактора (BDNF) и оздоровлением сердечно-сосудистой системы.

Высокие уровни BDNF были связаны с лучшими показателями пространственных способностей, эпизодической и вербальной памяти. Низкий уровень BDNF, особенно у пожилых людей, коррелировал с атрофией гиппокампа и нарушениями памяти, что может быть связано с когнитивными проблемами, возникающими при болезни Альцгеймера.

Изучая возможности по лечению и профилактике Альцгеймера, исследователи часто говорят о незаменимости физических упражнений для людей. Так, исследования показывают, что регулярная ходьба влияет на размер гиппокампа и улучшает память.

Физические нагрузки увеличивают скорость нейрогенеза. Появление новых нейронов — важное условие для переучивания (приобретения нового опыта и стирания старого).

Когнитивные нагрузки

Нейронные связи головного мозга развиваются, когда человек находится в обогащенной стимулами среде. Новый опыт — ключ к увеличению нейронных связей.

Новый опыт — это конфликт, когда проблема не решается теми средствами, которые уже есть у мозга. Поэтому ему приходится создавать новые связи, новые шаблоны поведения, что связано с увеличением плотности шипиков, количества дендритов и синапсов.

Обучение новым навыкам приводит к образованию новых шипиков и дестабилизации старых соединений шипиков с аксонами. Человек вырабатывает новые привычки, а старые исчезают. Некоторые исследования связывают когнитивные расстройства (СДВГ, аутизм, умственную отсталость) с отклонениями в развитии шипиков.

Шипики очень пластичны. Количество, форма и размер шипиков связаны с мотивацией, обучением и памятью.

Время, требующееся на изменения их формы и размера, измеряется буквально в часах. Но это значит также, что настолько же быстро новые соединения могут исчезать. Поэтому лучше всего отдавать предпочтение кратким, но частым когнитивным нагрузкам, чем длительным и редким.

Образ жизни

Диета может повышать когнитивные способности и защищать нейронные связи головного мозга от повреждений, содействовать их восстановлению после болезней и противодействовать последствиям старения. На здоровье мозга, по всей видимости, оказывают положительное влияние:

— омега-3 (рыба, семена льна, киви, орехи);

— куркумин (карри);

— флавоноиды (какао, зеленый чай, цитрусовые, темный шоколад);

— витамины группы В;

— витамин Е (авокадо, орехи, арахис, шпинат, пшеничная мука);

— холин (куриное мясо, телятина, яичные желтки).

Большинство перечисленных продуктов опосредованно влияют на нейротрофины. Позитивное влияние диеты усиливается при наличии физических упражнений. Кроме того, умеренное ограничение количества калорий в рационе стимулирует экспрессию нейротрофинов.

Для восстановления и развития нейронных связей полезно исключение насыщенных жиров и рафинированного сахара. Продукты с добавленными сахарами снижают уровни нейротрофинов, что негативно сказывается на нейропластичности. А высокое содержание насыщенных жиров в еде даже тормозит восстановление мозга после черепно-мозговых травм.

Среди негативных факторов, затрагивающих нейронные связи: курение и стресс. Курение и длительный стресс в последнее время ассоциируют с нейродегенеративными изменениями. Хотя непродолжительный стресс может быть катализатором нейропластичности.

Функционирование нейронных связей зависит и ото сна. Возможно, даже больше, чем от всех остальных перечисленных факторов. Потому что сам по себе сон — “это цена, которую мы платим за пластичность мозга” (Sleep is the price we pay for brain plasticity. Ch. Cirelli – Ч. Цирелли).

Резюме

Как улучшить нейронные связи головного мозга? Положительное влияние оказывают:

  • физические упражнения;
  • задачи и трудности;
  • полноценный сон;
  • сбалансированная диета.

Негативно воздействуют:

  • жирная пища и сахар;
  • курение;
  • длительный стресс.

Мозг чрезвычайно пластичен, но “лепить” из него что-то очень сложно. Он не любит тратить энергию на бесполезные вещи. Быстрее всего развитие новых связей происходит в ситуации конфликта, когда человек не способен решить задачу известными методами.

Источник: https://FB.ru/article/430398/neyronnyie-svyazi-golovnogo-mozga-formirovanie-razvitie-retseptorov-uluchshenie-rabotyi-golovnogo-mozga-i-sozdanie-novyih-neyronnyih-svyazey

Нейроны головного мозга – строение, классификация и проводящие пути

Соединение двух нейронов

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно).

Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга.

Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию.

Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества.

Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе.

Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз).

За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба.

Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому.

Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении.

Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности.

Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов.

Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика.

Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза, где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – борозды Роланда, а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже.

Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки.

Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма.

Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения.

Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения.

На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс.

На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель.

На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели.

Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению.

Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов.

Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга.

Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты.

Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем.

В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия.

Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга.

Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы.

Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление).

Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга.

Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга.

Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток.

В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».

Не нашли подходящий ответ?
Найдите врача и задайте ему вопрос!

Источник: https://sortmozg.com/structure/nejrony-golovnogo-mozga

Как создать новые нейронные связи? Какие факторы способствуют нейрогенезу

Соединение двух нейронов

Каждый из нас хоть раз в жизни слышал о том, что нервные клетки не восстанавливаются. Но, проведя массу серьезных исследований и экспериментов, ученым удалось доказать, что организм человека способен не только «тратить», но и «создавать» новые нервные клетки. Данный процесс получил название «нейрогенез».

Так как о нейрогенезе люди узнали совсем недавно, то пока у ученых нет однозначных ответов на касающиеся этой темы вопросы, а их мнениях во многом расходятся. И в этом нет ничего странного или удивительного, ведь изучать человеческий мозг трудно и по медицинским, и по этическим причинам.

Пока ученые продолжают проводить исследования на грызунах, мы в данной статье попытаемся разложить по полочкам всю ту информацию о формировании новых нейронных связях головного мозга, которая доступна нам на текущий момент.

Немного полезной информации о нейронах

Нейроны, в отличие от всех остальных клеток нашего организма, «не умеют» делиться, поэтому до недавних пор ученые были убеждены, что человек всю жизнь живет с тем ограниченным запасом нервных клеток, который достался ему при появлении на свет.

Результаты многочисленных современных исследований показали, что данное утверждение не соответствует истине, так как нейроны все же создаются на протяжении всей нашей жизни.

Происходит это благодаря стволовым клеткам, которые обладают способностью превращаться в клетки практически любого вида.

Наш мозг обладает собственным запасом стволовых клеток. Ученые пока не могут определить точное число принимающих участие в формировании новых нервных клеток отделов. Научному сообществу известно только то, что новые нейроны формируются в отвечающей за память и эмоции зубчатой извилине гиппокампа и тонком слое клеток, расположенном вдоль желудочков мозга (субвентикулярная зона).

Многие новообразованные нейроны практически сразу же погибают из-за активной работы нейромедиаторов, негативного влияния микросреды, определенных белков и прочей химии, происходящей в нашем головном мозге.

Чтобы новоиспеченная нервная клетка могла продолжить свое существование, ей необходимо сформировать нейронную связь (синапс) с другими нервными клетками.

Так как мозгу совершенно не нужны одиноко плавающие нейроны, то он просто уничтожает их, ведь никакой пользы они ему не приносят и в будущем принести не смогут.

Те же нейроны, которые смогли установить связь с другими нервными клетками, успешно встраиваются в структуру нашего головного мозга.

Каждый день в структуру мозга может встроиться около 700 – 800 нейронов, которые сумели выжить и образовать новые нейронные связи.

Запрограммированная мозгом гибель клеток или апоптоз является совершенно нормальным процессом, которого не стоит бояться. При помощи апоптоза мозг наводит порядок и избавляется от ненужных ему нейронов.

Мозг взрослого среднестатистического человека состоит примерно из 85 – 88 миллионов нервных клеток.

Мозг новорожденного содержит намного больше нейронов, но уже к концу первого года жизни их количество уменьшается практически в два раза. Психофизиолог и сотрудник Психологического института РАО Илья Захаров объясняет это тем, что человеческий мозг активнее всего развивается в первые три года после рождения.

Почему так происходит? Дело в том, что именно в этот период времени ребенок активно познает окружающий мир: он постоянно трогает что-то новое, нюхает его, видит, пробует на вкус или на ощупь и т.д.

Все новые знания фиксируются в головном мозгу малыша в виде новых нейронных связей, благодаря которым сохраняются все сформированные и уже закрепленные навыки, весь приобретенный эмоциональный и интеллектуальный опыт.

Хотя человеческий мозг подобным образом развивается на протяжении всей жизни, но «основной рывок» он совершает именно в самом раннем детстве.

Как нейронные связи влияют на наше восприятие окружающего мира?

Любым человеком, независимо от уровня его духовного развития, движет один из трех основных инстинктов:инстинкт размножения, инстинкт иерархии и инстинкт выживания. Они, глубоко «сидя» где-то в недрах нашего рептильного мозга, четко и расчетливо управляют нашей жизнью.

Именно благодаря инстинктам мы хотим завоевать признание и уважение окружающих нас людей, выделиться из толпы, любить и быть любимыми, рожать и воспитывать детей, двигаться вперед и решать не только жизненные, но и математические или экономические задачи.

Инстинкты очень сильно влияют на наш выбор и на нашу повседневную жизнь.

У животных за удовлетворение вызванных тремя основными инстинктами желаний отвечают рептильный мозг и ответственная за выработку «гормонов счастья» лимбическая система.

В нашем же арсенале есть отлично развитая кора головного мозга, которая дарит нам возможность удовлетворять инстинктивные желания миллионами разных способов.

Хорошо развитая кора позволяет нам не только реализовывать свои инстинкты, но и обманывать мозг, делая вид, что мы, занимаясь удовлетворением инстинктивных желаний, реально выбираем правильный, конструктивный и полезный способ.

Зачем же нам заниматься самообманом? А затем, что мозг и в первом, и во втором случае «вручает» нам «подарок» в виде гормональной «плюшки».

Суть данного вопроса заключается именно в самообмане нашего мозга: когда наш мозг совершает объективно вредное действие, он внутренне убежден в том, что это действие реально способствует нашему выживанию. Объективно полезное же действие мозг воспринимает как угрозу выживанию, поэтому оно зачастую сопровождается стрессом.

Ранее образованные нейронные связи включают в себя все наши умения, привычки и ассоциации. И в этом нет ничего плохого, а вся проблема заключается только в том, что чаще всего эти связи создаются совершенно случайно, а потом эти случайно сформированные нейронные дорожки ведут нас не в ту сторону и становятся серьезным препятствием на пути к нашему счастью.

Если родители постоянно хвалили ребенка за то, что он хорошо знает математику, то в его мозгу формируются мощные нейронные пути, созданные при помощи положительного действия дофамина и серотонина.

В данном случае математика становится для такого ребенка источником истинного удовольствия, поэтому он постоянно будет развиваться в этом направлении, а во взрослом возрасте сможет достичь каких-то существенных результатов и добиться успеха.

Источник: https://BestLavka.ru/6-ehffektivnyh-sposobov-sozdat-novye-nejronnye-svyazi-golovnogo-mozga/

Нервные ткани

Соединение двух нейронов

Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) – клетка с одним длинным отростком – аксоном, и одним/несколькими короткими – дендритами.

Спешу сообщить, что представление, будто короткий отросток нейрона – дендрит, а длинный – аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит – отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон – отросток нейрона, по которому импульс перемещается от тела нейрона.

Отростки нейронов проводят сгенерированные нервные импульсы и передают их другим нейронам, эффекторам (мышцы, железы), благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.

Миелиновая оболочка

Отростки нейронов покрыты жироподобным веществом – миелиновой оболочкой, которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, двигалась бы нога.

Существует болезнь, при которой собственные антитела уничтожают миелиновую оболочку (случаются и такие сбои в работе организма.) Эта болезнь – рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов – а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.

Нейроглия

Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения – нейроглии.

Нейроглия – вспомогательная часть нервной системы, которая выполняет ряд важных функций:

  • Опорная – поддерживает нейроны в определенном положении
  • Изолирующая – ограничивает нейроны от соприкосновения с внутренней средой организма
  • Регенераторная – в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая – с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии – шванновских клеток. Между ними хорошо заметны перехваты Ранвье – участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.

Синапс

На схеме выше вы наверняка заметили новый термин – синапс. Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс “преобразуется” в химический: происходит выброс особых веществ – нейромедиаторов (наиболее известный – ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.

Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение передается другому нейрону, и он генерирует нервный импульс. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Яд кураре

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к мышцам организма, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.

Нервы и нервные узлы

Собираясь вместе, аксоны образуют нервные пучки. Нервные пучки объединяются в нервы, покрытые соединительнотканной оболочкой. В случае, если тела нервных клеток концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервные узлы – или ганглии (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных – плечевое сплетение.

Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

Существует тяжелое мышечное заболеванием – миастения (от др.-греч. μῦς — «мышца» и ἀσθένεια — «бессилие, слабость»), при котором собственные антитела разрушают мотонейроны.

Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом – опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

Источник: https://studarium.ru/article/80

Доктор-про
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: